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Abstract—In this paper we present and evaluate a semi-

automatic labeling prototype to enable the creation of fully 
labeled energy disaggregation datasets from sub-metered data. 
Our results advocate in favor of our approach and show that it is 
possible to extract individual appliance transitions with 
considerable precision, as long as the individual appliance 
information is present in the sub-metered data, and its resolution 
is high enough. 
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I. INTRODUCTION 
Non-Intrusive Load Monitoring (NILM), also known as 

single point energy disaggregation, is a technology that aims at 
disaggregating and estimating the consumption of individual 
appliances by applying signal-processing and machine-learning 
(ML) techniques to the aggregated energy consumption 
measured from a single location in the household electric-grid.   

Early research in this topic dates back to the 1980s, when 
George Hart from the Massachusetts Institute of Technology 
(MIT) introduced his prototype Non-Intrusive Appliance Load 
Monitor [1]. It was only recently that this technology gained 
renewed attention from researchers, in part due to the growing 
impact of electricity in the worldwide overall energy demand, 
and the consequent need to promote a more sustainable 
generation, distribution, and consumption of electric energy 
[2].  

Despite all the potential and expectations of this 
technology, only recently there has been a serious effort to 
systematically evaluate the existing solutions. For example, the 
formal classification of NILM research according to two 
different approach categories, namely: i) event-based (EB), 
which include techniques that work by keeping track of every 
appliance state transition (e.g. TV turning on or off) using event 
detection and classification, assuming that the system was 
previously trained (e.g. [1], [3]) and ii) non event-based (NEB) 
where no previous knowledge of the existing appliances is 
assumed and the load disaggregation is done by means of 
techniques like Hidden Markov models or temporal motif 
mining techniques (e.g. [4], [5]).  

However, the greatest step towards the generalization of 
NILM research findings was the emergence of publicly 
available energy disaggregation datasets targeting the 
evaluation and benchmark of the existing approaches.  

In high-level terms, NILM datasets are collections of 
electric energy metrics taken from houses in real world 
scenarios containing measurements from the consumption of 

the entire house (taken at the mains) and of the individual 
loads, i.e. ground-truth data, obtained either by measuring each 
load at the plug-level or the individual circuit where the load is 
connected. 

Like NILM approaches, datasets are also categorized as 
event-based or non event-based, depending on which 
approaches they support. The major difference between the two 
lies mostly on the type of ground-truth data provided. More 
precisely, non event-based datasets provide the consumption of 
the individual appliances in the form of a time-series (e.g. 1 
Hz) whereas event-based datasets provide localization 
information of each appliance transitions in the whole-house 
data (e.g. timestamp and appliance name). 

To the best of our knowledge, to date, there are six public 
datasets created specifically for NILM evaluation (see TABLE 
I for an overview of these datasets), from which five target 
NEB approaches and only one is targeted at EB techniques. 

TABLE I.  OVERVIEW OF NILM SPECIFIC PUBLIC DATASETS 

Dataset Available data and resolution 
Approach 

EB NEB 

REDD [4] Active power at 1 Hz; Individual Circuit and 
Individual appliance every 3 - 4 seconds ✗ ✓ 

AMPds [6] Active, individual appliance and individual circuit 
every 1 minute ✗ ✓ 

UK-Dale [7] 
Current and voltage at 16 kHz; active, reactive and 
voltage RMS at 1 Hz; active and individual 
appliance every 6 seconds 

✗ ✓ 

iAWE [8] Current, voltage, active, reactive, apparent and 
individual appliance and individual circuit at 1 Hz ✗ ✓ 

ECO [9] Current, voltage, active power and individual 
appliance at 1 Hz ✗ ✓ 

BLUED [10] Current and voltage at 12 kHz; active and reactive 
at 60 Hz; power events list (timestamp and label) ✓ ✗ 

 

In this paper we argue that the main reason behind the lack 
of EB datasets is that the actual labeling process still relies on a 
heavy, lengthy, and error-prone manual inspection of the whole 
dataset. Thus preventing the emergence of fully labeled 
datasets.  

In fact, according to TABLE I, there is a visible possibility 
of creating EB datasets from NEB datasets since they all 
provide information about the individual loads in their ground-
truth data (e.g. most individual circuits contain timestamps and 
power readings for a single appliance), that only have to be 
extracted and mapped back to the whole house data.  

Against this background, and considering the importance of 
having fully labeled datasets to enable fair comparisons and 
benchmarks between the different approaches, we propose a 
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method for creating fully labeled energy disaggregation 
datasets, following in a semi-automatic approach that can be 
generalized to other datasets in different domains. 

We refer to it as semi-automatic labeling, in a sense that 
signal-processing algorithms are used to detect individual 
appliance transitions information from the ground-truth data, 
which are then validated by the end-user to guarantee its 
correctness. 

II. SEMI-AUTOMATIC LABELING PROTOTYPE 
The developed prototype consists of two main modules that 

we refer to as backend and frontend. A general overview of 
this approach is shown in Fig.  1 bellow. 

Starting from the left hand side, the ground-truth data is 
loaded from the existing datasets and that data is fed to an 
event detector algorithm (arrow 1). Next, each detected 
transition is stored in a local database with a respective 
timestamp and label (arrow 2).  

Lastly, a graphical user interface is used to load the 
automatically detected power events and provide the end-user 
with the opportunity of supervising the labeling process. 

 
Fig.  1. General overview of the semi-automatic labeling prototype 

In the backend, event detection algorithms are executed 
against each individual ground-truth circuit using different 
parameter combinations to understand which ones can provide 
better detection results. In the current prototype we are using 
the event detector described in our own previous work [11]. 

 This algorithm works with a sliding window (detection 
window) that is used to calculate the likelihood of a change in 
mean to occur at a given sample and a second sliding window, 
called extraction window that is used to find the peak values of 
the likelihood test. The detection window [i, k] is composed by 
two separate windows, [i, j[ and [j, k],  pre-event and post-
event respectively.  

For each sample in the power signal the likelihood of a 
power change occurring at that instant is given by (1), where 
µ[i, j[ and µ[j, k] are the mean of the pre-event and post-event 
windows respectively, σ[i, k] is the standard deviation of the 
detection window and P(x) is the power value of the xth 
sample. 

! ! = ! ![!,![!!!![!,!]![!,!]! !× ! !(!)− ![!,![!!!![!,!]
! ! (1)!

In the frontend, end-users are presented with a visual 
representation of the events as shown in Fig.  2. This offers 
them the possibility of supervising the labeling process.  

In the current prototype the users can confirm, edit and 
delete existing labels; end-users can also create new labels by 
clicking in the desired power measurement. 

III. PROTOTYPE EVALUATION 
Our prototype was evaluated against one week of data from 

the REDD and the AMPds public datasets. Here we present the 
evaluation procedure and the obtained results. 

A. Procedure 

Ultimately, our goal is to find the best event detection 
parameter combination for each appliance, such that the 
number of correctly detected events in each circuit is 
maximized and consequently the need for user intervention 
minimized.  

To this end, we tested several parameter combinations 
against the weekly data of each individual appliance and 
selected those that best served each of them. For selecting the 
best parameter combination we used the formulae in (2). 

!"#$_!"#"$% = !"#!"#!"#"$%! !"! − !!! ∗ !!
!!!  (2) 

Where ed is the number of detected events, ee is number of 
expected events (i.e. ground-truth), d is one day, D is the total 
number of days and w is a weighing parameter in case we wish 
to have different weights for the missed events i.e. False 
Negatives (FN) and the wrong detections i.e. False Positives 
(FP). w is given by equation (3). 

! = ! !,!!!!!!!!!!!!"! !" − !! < 0!
1 − !,!!!!"! !" − !! > 0 !!! (3)!

Next we present the results of each test, according to the 
following metrics: True Positives (TP); False Positives (FP); 
False Negatives (FN); Precision (Pre.), i.e. the proportion of 
TP against all the obtained positive results (TP + FP); 
Sensitivity (Sen.), i.e. the proportion of TP against the 
expected positive results (TP + FN). Here w is set to 0.5, i.e., 
FN and FP will have the same impact in the final results. 

B. REDD dataset 

The REDD dataset, released in 2011, contains both whole 
house (1 Hz) and sub-metered active power measurements (one 
sample every 3 seconds) from six households in the United 
States.  

For this test we selected one week of data (from April 18th 
2011 to April 24th 2011) from household number two, 
consisting of whole house consumption for phases A and B as 
well as sub-metered consumption information for 8 individual 
circuits. 

1) Labeling results 

In the particular case of the REDD dataset (TABLE II), we 
immediately notice the high precision values, indicating that 
for each power event that is detected there is a high probability 
that it is an actual power event (0.97 probability). However, the 
low sensitivity (0.75) indicates that there are still a 
considerable number of events (more precisely 25%) to be 
detected.  



TABLE II.  REDD DATASET: ONE-WEEK DATA RESULTS 

Appliance GT 
Events 

Event Detection Results 
TP FP FN Pre Sen 

Dishwasher 59 48 0 11 1 0.81 

Disposal 8 5 0 3 1 0.63 

Refrigerator 610 515 0 95 1 0.84 

Kitchen outlets 1 26 17 1 9 0.94 0.65 

Kitchen outlets 2 426 226 0 200 1 0.53 

Lighting 63 62 3 1 0.95 0.98 

Microwave 48 48 21 0 0.7 1 

Oven 18 18 0 0 1 1 

Total 1258 939 25 319 0.97 0.75 

The low sensitivity values are particularly relevant in the 
case of the refrigerator (~30% of the total misses) and the 
kitchen outlets circuit number 2 (~63% of the missed events). 

A more in-depth look at the individual results clarifies the 
reason for the high number of FN in the refrigerator (about 
15% of the events are missed) and the kitchen outlets # 2 (47% 
of the events are missed), which are directly related to the fact 
that most of the events in these circuits happen in short 
sequences of less than 3 seconds making it therefore hard to 
represent at this resolution, and consequently to be properly 
detected.  

In short, in these two situations what happens is that the 
event detection algorithm is only able to detected one of the 
transitions in short sequence (either the on of the off). This 
effect is shown in Fig. 3, where it is possible to see the 
detection results for 35 minutes of the kitchen outlets # 2. 

 
Fig. 3. 35 minutes of sub-metered data from the Kitchen outlets circuit # 2. 

In order to better understand this effect we have isolated, in 
the whole house consumption data at 1 Hz, the periods for 
which we had the most false negatives and tested different 
combinations of the event detector parameters (see Fig. 4).  

 
Fig. 4. 25 minutes of whole house consumption at 1 Hz 

In this particular situation the algorithm managed to detect 
all the transitions, which is in accordance to our suspects that 

 
Fig.  2. Semi-automatic labeling prototype user interface 



using only three measurements per second is clearly not 
enough to detect events in close succession. 

C. AMPds dataset 

Released in 2013, the AMPds is public dataset containing 
two years of aggregate and sub-metered data (at 1 minute 
intervals) for one household in Canada.  

For this test we selected one week of data (from April 1st 
2012 to April 7th 2012) including consumption from phases A 
and B and five sub-metered appliances. 

1) Labeling results 

In the case of the AMPds (TABLE III. ) the results of the 
event detection seemed very promising at a first glance (0.95 
precision and sensitivity). 

Yet, these high values are influenced by the perfect 
performance of the algorithm when applied to the refrigerator. 
In fact, results are quite poor for some particular appliances, 
namely the dishwasher and the clothes dryer (0.62 and 0.67 
sensitivity), and the clothes washer that yield a considerably 
high number of FP, and consequently a very low precision 
(0.29) despite the perfect value for sensitivity. 

TABLE III.  AMDDS DATASET: ONE-WEEK DATA RESULTS 

Appliance GT 
Events 

Event Detection Results 
TP FP FN Pre Sen 

Dishwasher 32 20 0 12 1 0.63 

Clothes dryer 55 37 3 18 0.93 0.67 

Clothes washer 12 12 30 0 0.29 1 

Fridge 547 547 1 0 1 1 

Wall-oven 5 4 2 1 0.67 0,8 

Total 651 620 36 31 0.95 0.95 

Looking at the data for each individual appliance it is 
possible to understand the main reasons behind these results.  
For example, Fig. 5 shows a full cycle of the clothes dryer and 
it is easily noticed that the event detector was not able to detect 
any two consecutive events, due to the low resolution of the 
dataset – 1 point per minute – (thus the high number of FN and 
subsequent low sensitivity). 

 
Fig. 5. A full clothes dryer cycle (Around 55 minutes) 

These results highlight the importance of data resolution in 
event-based approaches. In particular, when considering 

cycling appliances (like a clothes washer) where the several 
transitions happening in very short period of time are lost 
during the successive averaging steps. 

IV. CONCLUSION AND FUTURE DIRECTIONS 
In this paper we have presented and evaluated an approach 

that we believe can help produce better datasets by attempting 
to provide labels to the data in a semi-automatic fashion, thus 
alleviating researchers from the burden of doing this process 
manually. 

Our initial results clearly advocate in favor of such a 
solution, especially if we consider the enormous amounts of 
data that are generated by energy monitors. Furthermore, our 
results indicate that despite the considerable number of FP and 
FN in some particular appliances, when the sub-metered data is 
available it is possible to automatically find and label most of 
the transitions in the dataset with minimum user intervention. 

On the other hand, we have learned that there are still some 
interesting challenges that must be addressed in future 
versions. In particular, the automatic event detection process 
that has proven to degrade rapidly when the individual circuit 
data does not have a resolution that is high enough to detect 
power events that happen in quick succession. 

In future iterations of this work we will add and evaluate 
different detection algorithms so that it is possible to handle 
sub-metered data with different time resolutions. Furthermore, 
we will also evaluate our approach in other datasets for longer 
periods of time so that the effectiveness and feasibility of this 
approach can be verified. 
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