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Abstract
This paper describes recent work on the development of a wireless-based remote monitoring system for household energy

consumption and generation in Madeira Island, Portugal. It contains three different main sections: (1) a monitoring system

for consumed and produced energy of residencies equipped with photovoltaic (PV) systems, (2) developing a tool to

predict the electricity production, (3) and proposing a solution to detect the PV system malfunctions. With the later tool, the

user (owner) or the energy management system can monitor its own PV system and make an efficient schedule use of

electricity at the consumption side. In addition, currently, the owners of PV systems are notified about a failure in the

system only when they receive the bill, whereas using the proposed method conveniently would notify owners prior to bill

issue. The artificial neural network was employed as a tool together with the hardware-based monitoring system which

allows a daily analysis of the performance of the system. The comparison of the predicted value of the produced electricity

with the actual production for each day shows the validity of the method.
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1 Introduction

Over the last few years, the decrement in the manufacturing

cost associated with photovoltaic (PV) systems has affected

the electricity industry within various aspects. For example,

from utilities points of view, they have become a cost-

competitive alternative to conventional power plants,

whereas from users points of view, they are an attractive

option to reduce the electric bill [1]. The power produced by

a PV system depends on the variability of solar irradiance,

changing seasons and environmental factors. Intermittent

behavior of the output (energy production) of a PV system

may increase the operating costs for the electricity system

operator by increasing requirements of primary reserves and

reducing the reliability of electricity supply. In a scenario in

which a considerable portion of the energy of an electric grid

is provided by the PV systems, the prediction of the changes

on daily production might be necessary in order to schedule

the spinning resources capacity [2].

Consequently, the prediction of the generated power and

monitoring the consumption are important for planning the

operations of the power grid efficiently. In the present age of

energy management systems (EMS), intelligent manage-

ment assistance is no longer an option, but a necessity [3].

Furthermore, small-sized grid-connected PV systems are

often not monitored, because of the high monitoring system

costs. In practice, the owners of small-scale PV system

(households) may notice there is a problem in the PV

system when the production is completely down or the

energy production value as shown in the bill is wildly

different than the expected value. Nevertheless, there are

more reasons as motivation to make a performance
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analyzer for monitoring the PV systems, for instance,

increasing the reliability of the electricity supply and

improving the quality of scheduling the network opera-

tions, particularly in isolated grids where reserves are

limited. The PV system performance analyzer (PA) enables

the produced energy to be used more efficiently, depending

on the employed objective functions.

This work has been performed under the scope of

SmartSolar Project, in Funchal the capital of Madeira

island, Portugal. The actual and forecast daily solar radia-

tion values were provided by IPMA (Instituto Português do

Mar e da Atmosfera). The corresponding data used in this

work are gathered from the mentioned companies.

Regarding the main policies and legislation associated

with PV system installation, the Portuguese law indicates

that the PV system installations in the residential sector

must include two electricity meters, namely the household

consumption meter and the PV solar production meter [4].

Hence, a hardware (the SmartSolar-Box) was built that

measures and stores both the consumption and production

values to then analyze the data to detect some abnormali-

ties. The proposed solution combines a monitoring system

with an artificial neural network (ANN) model, interacting

with an algorithm that analyzes the values provided by the

ANN model. The algorithm can be used to detect PV

system malfunctioning through a simple comparison of the

daily production value with the estimated one. If the pre-

dicted values are outside the defined threshold during five

consecutive days, thus, the system emits an alarm message.

This paper is organized as follows: In Sect. 2, the

methodology is described, followed by the description of

PV system performance analyzer (PA). The SmartSolar

project is explained in Sect. 3. The statistical method used

for developing an estimator as tool is described in Sect. 4.

This section was published as a conference proceeding in

ES2DE 2017, Madeira, Portugal [5]. The assumptions and

several scenarios are presented in Sect. 5 where the results

are shown. The main conclusion and future work are dis-

cussed in Sect. 6.

2 Methodology

Figure 1 illustrates various parts of the performance ana-

lyzer (PA) in which the interaction between the compo-

nents is drawn. The PA is divided into four parts:

I. The production data,

II. The solar radiation data,

III. The artificial neural network model and

IV. The performance analyzer.

The SmartSolar-Box receives the solar production values

and sends it to a database through an Ethernet or Wi-Fi

connection (details are given in Sect. 3). The required input

for the ANN model is the solar radiation value in kJ/m2.

This solar radiation value is given by IPMA. Thereafter,

PA determines whether the system is functioning properly

or not. It receives two daily production inputs in kWh from

the same installation: one of them is the daily production

which comes from the SmartSolar-Box and the other

comes from the ANN model. To do so, since the predicted

value contains an error (it might be estimated higher or

less), therefore, a threshold on top of the estimated value is

introduced.

2.1 Threshold and alarm

To make an alarm system, the differences between the

outputs and the targets are analyzed for setting the alarm

threshold. An average of the value of the targets is calcu-

lated; thus, 15% of its absolute value is added to and

subtracted from the estimated value (output) to make the

upper and lower boundaries, where the outputs are taking

place (15% was chosen on an empirical basis after a trial

and error procedure). If both the estimated value and the

target are inside the predefined interval, it means that there

is no failure in the PV system.

This is performed to account for the uncertainty in the

model regarding different locations of meteorological sta-

tions and PV systems. On the other hand, if there is a

considerable difference between the estimated value and

target such that it crosses the thresholds boundaries, it

means the system is not functioning properly. In addition,

if this happens for five days in a row, an alarm would be

issued to inform the responsible sector of a malfunctioning

in the PV system. It is necessary to use a set of days in a

row (in this work five days are considered) to assure the

problem has not arisen from inaccuracies in the estimator

or due to sudden changes in weather circumstances. More

details with examples are given in Sect. 5.1.

3 SmartSolar-Box

The SmartSolar monitoring system consists of the

SmartSolar-Box, which is connected to the two energy

meters as shown in Fig. 2. The SmartSolar-Box measures

the energy of both meters through a current and voltage

sensor. It can calibrate itself using an impulse sensor if a

smart meter is available in place for the consumption side.

To collect data for monitoring the consumption and pro-

duction, the appropriate hardware was chosen to preprocess,

store and send data cost-effectively to a remote database.

The SmartSolar-Box is built based on a BeagleBone board.

Most of the proposed Monitoring systems [6–8] used the

Arduino board. However, in the SmartSolar-Box,
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BeagleBone board was used because of its advanced fea-

tures. These features include more analog inputs (impulse

sensors and current sensors), CPU with Faster speed (al-

lows small sampling times ex: 4000 samples per second)

and two Programmable Real-time Unit (PRU). The

SmartSolar-Box consists of a BeagleBone Black embedded

single board computer, with six 3.5-mm jacks, three RJ11

connectors, one RJ45 connector, one USB connector that is

connected to a Wi-Fi dongle and a 230V power connector

to feed the board. Table 1, Figs. 3 and 4 represent the

hardware and its connections.

Two of the 3.5-mm jacks are used to connect the con-

sumption and production current sensors, and the voltage

sensor is connected directly to the board, while the rest of

the 3.5-mm connectors are free to add other sensors, for

instance, a solar radiation sensor. The BeagleBone receives

the sensor information every second to calculate the con-

sumption and production power every minute. These power

calculations are sent to the database through the Ethernet

cable or Wi-Fi dongle or stored in the internal memory in

case of connection failure. The power is calculated with

every instant current and voltage point (not rms) which

translates into 4000 samples per second, which corresponds

to 80 points per wavelength in a 50-Hz grid.

Fig. 1 Flowchart of the PA procedure

Fig. 2 SmartSolar-Box concept

Table 1 Front and rear inputs specification

Key Type Pin

Front input Production impulse sensor Digital P9_16

Consumption impulse sensor Digital P9_13

Production current sensor Analog AIN5

Inactive Analog AIN5

Unused 0 Digital P9_13

Rear input Consumption current sensor Analog AIN6

Radiation sensor Analog AIN1

Unused 1 Analog AIN0

Unused 2 Analog AIN2
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4 Estimator

The estimation of the PV production is associated with the

weather conditions and forecasts. The estimated output is

converted into electric energy (kWh). The existing solu-

tions in the literature might be categorized into the three

types of physical, statistical and hybrid methods [9].

I. Physical models are simple, based on the global

irradiance on the solar cell, or they may be more

complex if additional parameters are included. The

electricity produced by PV modules is affected by

several factors such as solar irradiance and shadow-

ing, soiling, aging, cell temperature, the solar

incidence angle and the load condition. Hence, it is

not easy to predict the produced energy due to the

conversion process dependency to several parame-

ters as ambient and cells conditions.

II. Statistical methods are mainly based on the concept

of stochastic time series or persistence. Many

researchers have been working on providing a

forecasting tool in order to predict PV power

production, where the use of machine learning

methods has become the most common approach to

forecast a time series future values [10].

III. Hybrid models are combined by two or more of the

previously described methods. To improve the

forecast value, different models with unique features

may be employed. For example, Ogliari et al.

proposed a novel hybrid evolutionary approach for

training artificial neural networks to achieve more

accurate forecasting of PV systems based on weather

forecast as input data [11].

Many researchers have been working on providing a

forecasting tool to predict PV power production, where

most of them have used the two-phase approach. In the first

phase, the solar irradiance on different time scales is

forecast based on artificial neural networks, fuzzy logic

and/or hybrid system [2]. In [12], the authors used recur-

rent ANN to predict irradiance by using only historical

data. In the second phase, the forecast irradiance data are

used as inputs in commercial PV simulation software, such

as TRNSYS [13] and HOMER [14]. The output of these

programs is an estimated simulation, on an hourly basis of

the AC power production of the PV system.

Chen et al. [2] introduced an ANN that uses a radial

basis function, as an activation function, in order to fore-

cast 24 h ahead of power generation of a roof-top PV

system for an experiment in online training. Rather than

Fig. 3 SmartSolar-

Box hardware

Fig. 4 Front and rear views of the hardware
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using two-phase methods as described previously, authors

made a direct forecast of the output power of the PV sys-

tem from its historical record and the online meteorological

services.

The reviewed literature confirms that artificial neural

networks have been successfully applied for forecasts of

intermittent energy supply, particularly of PV production

[2, 15–19]. The ANNs, as illustrated in Fig. 5, are com-

posed of simple elements operating in parallel which are

inspired by the biological nerves systems. ANNs can be

trained to perform a function by adjusting the values of

connections (weights) between the elements. Typically,

ANNs are trained so that an input leads to a specific target

output. In the figure below, the network is adjusted, based

on a comparison of the input and the target. Typically, a

considerable number of input/target pairs are required to

train a network. In this paper, the daily irradiance and the

daily electricity production are considered as input and

target pairs.

In order to make the prediction tool, a multilayer per-

ceptron (MLP) was employed that maps sets of inputs

(irradiance) onto a set of appropriate outputs (daily pro-

duction). An MLP consists of multiple layers of nodes in a

directed graph and each layer fully connected to the next

one. Figure 6 represents the structure of the ANN used in

this work. Except the input, each node is a neuron (or

processing element) with a nonlinear activation function.

The MLP utilizes a supervised learning technique called

back-propagation to train the network. As it is shown, it

consists of an input, two layers of neurons (one hidden and

one output layer) and an output. The hidden layer contains

four neurons with the transfer function, tan-sigmoid [20].

Equation (1) demonstrates the mathematical explanation of

tan-sigmoid.

a ¼ tansigðnÞ ¼ 2

1þ eð�2�nÞ � 1 ð1Þ

where n is the input and a represents the output. It calcu-

lates the output layer according to its net input. The data

were manually introduced into the ANN, and then, the

training phase was applied. For every month, the data were

sorted randomly, and then, out of each month (30 days)

%70 of the samples were selected for training, %15 for

validation and %15 for testing phases. In the training

phase, the Levenberg–Marquardt back-propagation method

was employed, which is a function that updates weight and

bias values according to Levenberg–Marquardt optimiza-

tion method [21].

In the following, the data used in this work is presented,

followed by the description of the scenarios and considered

assumptions. The daily accumulated irradiance magnitude

ðkJ=m2Þ is available from several meteorological stations,

for the period of 2014 to 2015. In addition, the historical

data of the accumulated daily production (energy in kWh)

for each of the PV systems had been recorded within the

same time frame (from 2014 to 2015). For the samples used

for this work, in most of the cases, the size of the PV

systems do not exceed more than 5 kW installed power,

except in one case in which the installed power is 12 kW.

Figure 7 shows both the geographical location of all the

considered PV systems and the location of the meteoro-

logical stations (three of them). Madeira island is in

Atlantic Ocean where its capital Funchal has coordinates of

32�390N 16�550W based on numerical coordination system.

Most of the PV systems are located in the south and

southwest of the island. There are fourteen meteorological

stations that spread out across the island. In this work, the

data of only the three of them were used (as the input) to

have the best station and the other two as backup in case of

lack of the data from the prior one. The selection process of

these three among the other meteorological stations is as

follows:

I. Firstly, the correlation between the data of produced

energy (daily kWh) and the value of the irradiance

ðkJ=m2Þ from all the meteorological stations was

calculated. Then, the meteorological stations with

the highest correlation values were selected. In

addition, the values from the meteorological stations,

those which are ranked as the second and third as the

most correlated stations, are reserved as backup

values in case of not accessing to the data from

assigned (the first) weather station.

II. This procedure was applied to all the PV installations

individually. The consequence was a selection of

three meteorological stations which are marked as

white pins in Fig. 7, namely I. Lugar de Baixo, II.

Funchal Observatory and, III. Funchal Lido.

Figure 8 represents the data dispersion over a one-year

term (i.e., the daily energy production in kWh). It is worth

mentioning that a significant portion of the data was

missing, which caused series of obstacles in the result.

Within a one-year term (365 days) for the 24 PV installa-

tion points, 8760 samples would be an ideal number to

develop a prediction tool for the case study of this research.Fig. 5 Artificial neural networks overview [20]
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However, there were only 3012 samples recorded for all

the PV installations (8760 samples are considered as a

sufficient number in a scenario in which each PV instal-

lation contains 365 days, of record). Nevertheless, as the

result shows, the predicted values from the model are

slightly differed from the actual values.

4.1 Models

The three main models are defined as follows:

I. One Generic model.

II. Three Localized models for the three meteorological

stations mentioned earlier

III. Four Specific models

The Specific model corresponds to a model which was built

by pairs of inputs and targets from only one PV installation

system which had the highest correlation with one of the

meteorological stations. As shown in Fig. 7, three different

locations are highlighted. In all of them, an ANN as a tool

is employed in order to generate the value of the produced

energy (kWh) based on the solar radiation values. The

result is shown in the next section.

5 Evaluation and result

The purpose of making both models (Localized and

Specific), was to examine the accuracy of the Generic

model. Hence, the performance of each model was asses-

sed. The result of this evaluation is presented in Figs. 9

and 10, for the Specific and Localized models, respec-

tively. The result for the Generic model is shown in

Fig. 11. The outcome of this evaluation is drawn in four

separated graphs as follows:

– The function-fit (the up-left graph) shows the errors,

through drawing the differences between the targets

(the real production values) and outputs (estimated

values).

– The correlation (R) between the targets and outputs is

demonstrated in the right upper part of each figure.

Fig. 6 Common neural network

structure [20]

Fig. 7 Geographical location of PV systems on Google Maps (yellow pins) and meteorological stations (white pins)

Fig. 8 Data dispersion
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– The mean squared error (MSE) measures the average

of squares of the error that is the difference between the

estimated output and the real production (target).

– And finally, the right down part of the figure shows the

histogram of errors, along with the mean and standard

deviation.

Figure 9 represents the result of the Specific model,

made by using 250 samples from only one PV system

which is called Conduminho. Figure 10 shows the result of

an evaluation of employing the Localized model, made by

using 2056 samples gathered from 17 PV installations.

Figure 11 demonstrates the result of the same assessment

for the Generic model, using all the data (3012 samples).

A comparison between the Generic model, three

Localized and four Specific models was made. The same

pairs of inputs and targets (samples that were not used in

the training phase of any ANN models) of four PV system

installations (namely Club Naval, Antonio, Conduminho

and Neto) were given to all the models. Afterward, the

values for each of the correlations (R) , mean square error

(MSE) and root-mean-square error (RMSE) were calcu-

lated. Table 2 presents these values all together.

As shown in Table 2, the R, MSE and RMSE associated

with each model in comparison with the answers (outputs)

given by the Generic model are slightly different. There-

fore, it can be concluded that the answers given by the

Generic model are acceptable.
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Fig. 9 Result of the

performance of the Specific

Model. It is called Conduminho

Fig. 10 Result of the

performance of the Localized

model (Lugar de baixo (1))
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Furthermore, the following figures illustrate the trend of

each model in computed outputs through feeding them with

bunch of homogeneous samples (inputs). The answers

given by each model were compared to the targets, as

Figs. 12 and 13 demonstrate this comparison. Each fig-

ure shows a series of answers (30 days) given by the

Specific, Localized and Generic models.

In each graph, the target represents the actual value of

the production, which was recorded previously. The

answers given by Generic, Localized and Specific models

represent the outputs using different ANNs as the estima-

tor. Figure 13 shows this comparison for the installation

named Club Naval (4.1 kW of installed power) located in

zone three.

In most of the cases, all the three models (Generic,

Localized and the Specific) give the outputs which are very

close to the targets. It is worth mentioning that due to

having sufficient pair of samples (about 2000 samples) for

the zone one, more samples were participated in the

training phase of building up the models. As a result, the

Generic model shows a better performance for the instal-

lations which are in this zone.

5.1 Threshold and alarm

As shown in Table 2, in most of the cases, the outputs

given by the Specific model are closer to the targets fol-

lowed by the answers from the Local Generic model and at

2 4 6 8 10
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Fig. 11 Performance of the

Generic model

Table 2 Comparison between

Generic, Localized and Specific

Models

Model Specific Localized Generic

Locations R MSE RMSE R MSE RMSE R MSE RMSE

3 (Club Naval) 0.88 6.40 2.50 0.87 7.10 2.70 0.84 10.4 3.20

3 (Antonio) 0.94 3.20 1.80 0.93 3.40 1.90 0.93 4.00 2.00

1 (Condominio) 0.92 53.60 7.30 0.92 69.70 8.40 0.92 59.00 7.70

2 (Neto) 0.89 5.70 2.40 0.89 5.80 2.40 0.90 5.40 2.30

Fig. 12 Target Vs the outputs given by Generic, Localized and Specific models from zone 1 (Neto) for the month of February
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last the Generic model, respectively. In order to facilitate

the prediction procedure and be able to use the Generic

model as the main estimator for all the PV systems, in this

work, a threshold was defined. Figure 14 demonstrates the

answers estimated by the Generic model, the targets and

the defined domain of the alarm threshold for a period of

thirty days. If both of the estimated value and the target are

inside the domain (between the Generic-min and Generic-

max), it means that there is no failure in the PV system. On

the other hand, if there is a considerable difference between

the estimated value and target such that the target is out of

the threshold’ s boundaries, it means there is a malfunc-

tioning in the PV system. If this happens for five days in a

row, consequently an alarm would be issued to inform the

authorities about the failure. It is necessary to use a set of

days in a row (in this work five days was considered) to

assure that the problem is not arisen from inaccuracies in

the estimator or due to sudden changes in the weather

circumstances.

6 Conclusion

This work includes different parts of the SmartSolar pro-

ject: i) the SmartSolar-Box as a hardware was introduced.

It is responsible to collect, store and send the data (the

values of energy consumption and energy production) to a

receiver center, ii) the artificial neural network was

employed in order to develop a tool to predict the produced

energy by roof-top PV systems and iii) the last part focused

on developing a model as the PV performance analyzer,

using the outputs given by the ANN model, in order to

detect the malfunctioning arisen from PV systems.

One of the significant obstacles in this work lies in the

very particular orography of Madeira island. In addition, its

sudden weather changes affects the accuracy of the esti-

mated value of the energy production. This is more of a

concern for those PV systems which are not located close

by their associated weather stations. Consequently, the

authors tried to make various models (Generic, Localized

and Specific models) and then by comparing the given

outputs from each model with the targets studied the fac-

tors which are involved in the values of the outputs. For

instance, it was perceived that for the two PV installations

which are located in a same zone, the altitude differences in

these two points with their associated weather station has a

direct correlation with the accuracy of the estimated value

of the produced energy. In other words, the more difference

in the altitude, the bigger error in the output.

However, there were some cases that even though they

were located in different altitude in comparison with their

associated weather stations, the output given by the models

contained a very little errors. In conclusion, it is worth

mentioning that, beside the influence that the altitude dif-

ferences may have in the outputs, the quantity of the

samples (the more the better) which were participated in

the learning phase of building the ANN models, the angle

of the solar panel orientation and the cleanliness of the

Fig. 13 Target Vs the outputs given by Generic, Localized and Specific models from zone 3 (Club Naval), for the month of September

Fig. 14 Estimated values vs targets in the defined amplitude of the alarm threshold
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panels would have a significant contribution in the accu-

racy of the estimator.

The final goal in this work was to find the most appro-

priate model by comparing the outputs from the three

different models. It was found out that the most accurate

answers were given by the Specific model, followed by the

Generic Local and Generic model, respectively. However,

the histogram of the errors associated with each model

showed how far the estimated answers were from the tar-

gets, where the answers from the Generic model were not

that much far from the outputs given by the other models.

In fact, having the most accurate answer was not the

main goal of developing such PA, but rather one common

generalized model which can estimate the values of pro-

duced energy for all the PV systems. The answers given by

the Generic model meet the requirement of the PA, as one

of its inputs. The use of the Generic model simplifies the

use of the estimator model as well. In other words, it is not

necessary to use the Specific models which are assigned to

every PV installation system.

Heretofore, the users have not been notified that their

roof-top PV system has been or has not been working

properly, unless they receive the periodically bill of their

production. The hardware-based monitoring system, the

developed ANN models, together with the PA, enable a

daily monitoring of the PV system performance.
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