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Abstract—This paper proposes a framework to select the best-
suited battery for co-optimizing for peak demand shaving, energy
arbitrage and increase self-sufficiency in the context of power
network in Madeira, Portugal. Feed-in-tariff for electricity network
in Madeira is zero, which implies consumers with excess production
should locally consume the excess generation rather than wasting
it. Further, the power network operator applies a peak power
contract for consumers which imposes an upper bound on the
peak power seen by the power grid interfaced by energy meter.
We investigate the value of storage in Madeira, using four different
types of prosumers, categorized based on the relationship between
their inelastic load and renewable generation. We observe that the
marginal increase in the value of storage deteriorates with increase
in size and ramping capabilities. We propose the use of profit per
cycle per unit of battery capacity and expected payback period as
indices for selecting the best-suited storage parameters to ensure
profitability. This mechanism takes into account the consumption
and generation patterns, profit, storage degradation, and cycle and
calendar life of the battery. We also propose the inclusion of a
friction coefficient in the original co-optimization formulation to
increase the value of storage by reducing the operational cycles
and eliminate low returning transactions.

I. INTRODUCTION

Renewable integration will increase opportunities for con-
sumers in power networks for reducing their local cost of
consumption [1]. Energy storage co-optimization is becoming
popular with the possibility of doing more than one dedicated
task without undermining the profit of storageby performing each
task at a time. Authors in [2] show that co-optimizing profit leads
to higher than doing one or few of tasks together.

In our prior work [3] we introduced power network rules
in Madeira and show the profitability of a battery for a local
prosumer. In this paper, we explore the dependencies of inelastic
load and renewable generation size on the storage parameters
and its profitability. Energy storage performing dedicated roles
may not be profitable. Authors in [4], [5] show that batteries
are not profitable if only used for energy arbitrage. Authors
in [6] observe that the profit made by storage performing only
arbitrage is sensitive to the ratio of selling and buying price of
electricity. It is observed that as this ratio goes to zero, the value
of storage increase for cases where the prosumer has inelastic
consumption. Thus in the context of Madeira energy storage
can help in increasing installed renewable generation as excess
generation is not compensated and in this case, a battery can be
used to locally increase self-sufficiency for the prosumer. It is
noteworthy that the co-optimization of energy storage usage has
been extensively researched due to the high cost of batteries. In
Table I we list some of the works in this area. In this paper,

we use energy storage for performing energy arbitrage, increase
self-sufficiency and facilitate peak demand shaving.

Authors in [7] observe that peak demand shaving for discharge
period of more than an hour is not profitable. For Madeira the
Peak Power Contracts (PPCs) are applied for the instantaneous
power level in the time-scale of seconds, thus use of storage
for peak shaving is reasonable. Authors in [8] propose battery
cycle life optimization for prolonging the operational life of the
storage. Authors in [9], [10] propose sizing of energy storage
in context of a microgrid using mixed-integer programming. [9]
consider microgrid reliability for sizing and [10] use storage
devices for spinning reserves. Authors in [11] consider storage
sizing in the context of wind power applications. In this paper,
we provide a framework for identifying storage profitability
battery for prosumers.

TABLE I
CO-OPTIMIZATION OF ENERGY STORAGE

Paper Co-optimizing for
[12] PV integration support, peak shaving, frequency regulation

[13], [14], [15] Arbitrage and frequency regulation
[2], [16] Peak shaving and frequency regulation

[17] Arbitrage, congestion relief and curtailment reduction
[18] Arbitrage with power factor correction.

Li-Ion battery life is measured in cycle and calendar life. In
[19] the operational life of a battery is increased by matching
calendar life degradation with the ageing degradation of the
battery. Extending this idea and taking the depth-of-discharge
(DoD) of the battery authors in [20] propose a way to measure
the cycles of operation of the battery. It is highlighted that
the nonlinear relationship between cycle life and DoD, [21],
[8], encourages us to use this methodology to calculate storage
returns per cycle. In this paper, we improve the factor profit
per cycles proposed in [20] to make it independent of storage
capacity. This new factor along with expected payback period of
the battery can be used for identifying the expected break-even
profit per cycle, thus by comparing these two scalars we can
comment on the profitability of a battery.

Further, battery prices are falling with more research in this
domain, which will promote increased usage of batteries in
power networks. Historically, the cost of battery fell by 85%
from 2010 to 2018, reaching an average price of $176/kWh.
The price of an average Li-Ion battery pack is projected to be
around $94/kWh by 2024 and $62/kWh by 2030 [22].

The key contributions of this paper are:
• Index for measuring the profitability of Li-Ion battery: Taking
into account storage parameters and profit, we propose using
profit per cycle per unit capacity and expected payback period as
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the factors for selecting storage parameters ensuring profitability.
These factors take into account battery degradation, profit, cycle
and calendar life of the battery. For calculating operational cycles
we use algorithm DoDofVector proposed in [20].
• Numerical evaluation: Based on consumer load and renewable
generation consumer are categorized into four categories. Using
these four categories of prosumers we use the data collected for
June 2019 and apply time-of-use (ToU) rates and Peak Power
Contract (PPC) improvement to identify the marginal value of
storage. We observe that a smaller sized and ramping capability
storage is profitable in all four categories.
• Observations: Using data and numerical results we make the
following observations which can be generally of interest:

• The marginal value of storage reduces with increase in size
and ramping capability.

• Under zero-feed-in tariff, a higher average net-load signif-
icantly improves the profit prosumer can make.

This paper is organized as follows. In Section II we intro-
duce the Madeira data collection initiative under H2020 project
SMILE. In Section III we provide the system description, bat-
tery model and we summarize the co-optimization formulation
proposed in [3] and extend this formulation for controlling
cycles of operation for increasing the operational life of the
battery. In Section IV we present an algorithm for identifying the
profitability of a battery. In Section V we present the numerical
results. Section VI concludes the paper.

II. CONTEXT AND DATA COLLECTION IN MADEIRA

In the Madeira archipelago, since 2014, prosumers are not
allowed to inject the excess energy to the local grid. This
imposition is owing to the isolated nature of the Madeira electric
grid that is very sensitive to variations in the energy produced
by RES. Yet, while this technical restriction helps to maintain
grid stability, it is also leading to a stagnation in the number
of prosumers. For example, as of this writing, there are only
49 solar PV prosumers registered in Madeira island (an average
of about 0.6 kWp installed capacity), in a universe of 270,000
residents [3], [23]. Inclusion of energy storage along with over-
sizing renewables at consumer end have the potential to increase
renewable installations in the island.

The development of better control strategies for battery en-
ergy storage is one of the goals of the H2020 SMILE, https:
//www.h2020smile.eu, Project, an European Union co-funded
project. Under the scope of this project, PV production (PV )
and power consumption (Load) measurements were taken from
14 prosumers in the island [24], [25]. The monitored prosumers
are categorized into four categories, based on their inelastic load
and PV generation: (C1) PV generation slightly more than the
inelastic load leading to some waste of excess generation, (C2)
consumer actively managing the load to match the instantaneous
PV generation thus reducing the production wastage, (C3) PV
generation is comparable to the magnitude of inelastic load with
significantly higher average net-load compared to other cases
considered and (C4) PV generation is significantly more than the
inelastic load leading to significant amount of energy wastage.

For this paper, one prosumer was selected from each category.
The PPC, installed solar PV capacity, and the monthly totals of
each prosumer for June 2019 are presented in Table II.

In Table II, PVLoads is the amount of solar PV production
that is consumed directly by the loads, PVGrid is the amount
of solar PV production injected into the grid (hereby considered
wasted production since there is no feed-in tariff), GridLoads is
the amount of power from the grid that is consumed by the loads,
and Savings is the amount of saving due to the installation of
the solar PV (assuming a fixed cost of 0.16 Euro per kWh).

Fig. 1 shows the relationship between PV and inelastic load
for the selected prosumers. U2, U3, and U12 are domestic pro-
sumers. U8 is a commercial prosumer, a small family restaurant.
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Fig. 1. PV and inelastic load for 4 types of prosumers C1, C2, C3 and C4

TABLE II
INDICES OF LOAD AND GENERATION FOR U2, U3, U8, U12 FOR JUNE 2019

Case UPAC Contracted Installed PV Load PVLoad

ID Power (kVA) PV (kWp) (kWh) (kWh) (kWh)
C1 U2 6.9 1.5 180 459 121
C2 U3 5.75 1 120 360 113
C3 U8 20.7 3.92 610 1969 531
C4 U12 6.9 3 305 306 145

Case UPAC PVGrid GridLoad Savings Average Average
ID (kWh) (kWh) (Euros) PV (W) Load (W)

C1 U2 59.64 338 19.30 251 637
C2 U3 6.85 247 21.19 168 501
C3 U8 78.53 1438 85.09 848 2736
C4 U12 160 162 26.37 424 426

III. SYSTEM MODEL AND STORAGE CO-OPTIMIZATION

In this section, we present the system and battery model
and the summarize the co-optimization formulation developed
in [3]. We extend this formulation for limiting storage cycles of
operation using a friction coefficient.

A. System and Battery Model

We consider operation over a total duration T , divided into N
steps indexed by {1, ..., N}. The duration of each step is denoted
as h. Hence, T = hN . At time instant i, the information avail-
able is the end user consumption di, the renewable generation
ri and the storage energy output si. The load without storage is
denoted as zi = di − ri. The load seen by grid is denoted as
Li = di − ri + si.
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Battery Model: The efficiency of charging and discharging
is denoted by ηch, ηdis ∈ (0, 1], respectively. The change in
energy level of the battery is denoted as xi=hδi, where δi denotes
storage ramp rate at time instant i, such that δi ∈ [δmin, δmax],∀i.
The energy output of storage in the ith instant is given by si =
[xi]

+

ηch
−ηdis[xi]−, where [x]+=max(0, x) and [x]−=−min(0, x).

The ramping constraint induce limits on si given by

si ∈ [δminhηdis, δmaxh/ηch], ∀i. (1)

The energy stored in the battery is denoted as bi, defined as
bi = bi−1 + xi. Battery capacity constraint is given as

bi ∈ [bmin, bmax], ∀i. (2)

where bmin and bmax are minimum and maximum permissible
battery charge levels respectively. We use xC-yC notation to rep-
resent the relationship between ramp rate and battery capacity.
xC-yC implies battery takes 1/x hours to charge and 1/y hours
to discharge completely.

B. Cost of the battery with inverter

The cost of inverter depends on the rated apparent power
output capability. Based on cost of 6 kW SMA Sunny Boy 2.0,
the cost per kW of inverter is 100 euros/kWh [26]. The cost of
Li-Ion battery is assumed to have two components: (a) capacity
cost and (b) ramping capability cost, similar to [27]. The cost
of battery (with inverter) for per kWh in euros is given as

Battery Cost = 300 + 0.25 max(x, y)100 per kWh, (3)

where x, y denotes the charging and discharging rates as de-
scribed in the battery model xC-yC.

C. Co-optimization formulation

The power network in Madeira impose time-of-use (ToU)
electricity prices for consumption, applies peak power restriction
and imposes zero feed-in-tariff. The ToU price considered is
shown in Fig. 2. The PPC contracts have 8 levels: 3.45, 4.6,
5.75, 6.9, 10.35, 13.8, 17.25 and 20.7 kVA for LV prosumers
with per day cost as 0.1643, 0.2132, 0.2590, 0.3080, 0.4532,
0.5981, 0.7436 and 0.8892 respectively. The detailed consumer
contracts in Madeira are summarized in [3]. The co-optimization
formulation is developed in [3] and given as

(Popt) minimize
si

N∑
i=1

pelec(i)θi(si)h (4a)

subject to

Ramping constraint, Eq. 1 , (4b)
Capacity constraint, Eq. 2, (4c)

Self-sufficiency, θi(si) ≥ 0, (4d)
Arbitrage, θi(si) ≥ [zi + si], (4e)

Peak shaving, [zi + si]/h ≤ P setmax (4f)

where θi(si) = max(0, zi + si). The peak power threshold,
P setmax, is selected close to the power level (Pmax+δmin), subject
to P setmax ≥ (Pmax + δmin). P setmax is selected by the electricity
consumer as a PPC contract with the utility in Madeira. Note
that this formulation prioritizes self-consumption over arbitrage.

D. Co-optimization with control of cycles

Note that the formulations discussed previously do not con-
sider battery life that is affected by charge-discharge cycles.
Battery manufacturers measure the life of a battery using two
indices: cycle life and calendar life. Cycle life denotes the
number of cycles a battery can operate at a certain depth-of-
discharge before reaching its end-of-life or EoL (EoL is reached
when battery capacity reduces to 80% of its initial rated capacity
in Wh). Similarly, calendar life denotes the maximum probable
age that the battery can be operational before reaching EoL. Fol-
lowing our prior work [20], we define a friction function for the
active power to model the degradation due to cycles of operation
as P ifric =

[P i
B ]+

ηfric
− [P iB ]

−ηfric. In the original formulation (Popt)
the constraint Eq. 4e is modified as θi≥ [zi + P ifric]. The friction
coefficient takes a value from 1 to 0. ηfric needs to be tuned so as
the operational life is increased by matching calendar and cycle
degradation [20]. If the battery is not over operating then ηfric is
set to 1. For cases where the battery is over-performing, the low
returning transactions is eliminated by decreasing value of ηfric.

IV. ENERGY STORAGE PROFITABILITY

We propose a mechanism for ensuring storage
profitability considering battery cycle and calendar life,
thus in effect considering battery degradation. Algorithm
BatteryProfitability provides the steps to identify
storage profitability. For more than one battery is profitable, in
such a case it will depend on the prosumer on whether they
prioritize payback period or the returns per cycle.

Algorithm 1 BatteryProfitability
Inputs: ηch, ηdis, δmax, δmin, bmax, bmin, b0, h,N, T, i = 0

1: Calculate total storage profit, GT , by solving Popt over the instants,
Ntotal, based on load, price and renewable generation,

2: Calculate equivalent 100% DoD cycles denoted as N100
cyc using

DoDofVector proposed in [20],
3: Calculate Gcyc = GT /(N

100
cyc brated),

4: Calculate Pcyc = Gcyc−Ccyc, where Ccyc is the per cycle (100%)
cost of the battery,

5: Calculate the Expected Payback Period (ExPB) in years =
(BcostNtotal)/(GTNyear), where Bcost denotes the battery cost
and Nyear denotes number of samples in a year,

6: Battery is profitable if Pcyc > 0 and ExPB < Calendar life of the
battery.

V. NUMERICAL RESULTS

For the numerical simulations we use the battery parameters
listed in Table III. The characteristics of the four prosumers are
described in Figure 1 and Table II. Simulations are performed
for the month of June 2019.

The performance indices used for evaluation are:
• Arbitrage and self-sufficiency gains (Garb);
• Peak shaving gains (GPD): difference between nominal PPC
and the new PPC contract after adding storage;
• Total gains (GT): is the sum of Garb and GPD,
• Gains per cycle (Gcyc): In prior work [20] we develop a
mechanism to measure the number of cycles of operation based
on DoD of energy storage operational cycles.
• Profit per cycle (Pcyc): is the profit battery owner makes



per cycle compared to the per cycle cost of the battery (Ccyc);
Pcyc = Gcyc − Ccyc;
• Expected payback period (ExPB): is the linear extrapolation
of the payback period compared to GT. ExPB = Cbat/GT
• Self-sufficiency (SS): calculated using the total energy con-
sumed, PV generation and storage output,
• Wasted energy: The surplus production is wasted energy is
measured in kWh.

We consider the battery cycle life equals 4000 cycles at 100%
DoD. Using this description the euros per cycle per rated battery
capacity for different ramping batteries are listed in Table IV.
Considering the calendar life equals 7 years, the battery should
perform ≈47.6 cycles per month in order to last 7 years and
make more than the values listen in Table IV to be profitable.

TABLE III
BATTERY PARAMETERS

bmin, bmax, b0 10%, 100%, 50% of brated
brated 1, 2, 5 kWh

ηch = ηdis 0.95
δmax = −δmin 0.25 brated W for 0.25C-0.25C,

brated W for 1C-1C, 2brated W for 2C-2C
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Fig. 2. Time-of-use (ToU) electricity prices

TABLE IV
STORAGE PROFITABILITY WITH DIFFERENT RAMPING PER KWH
Battery Inverter Battery Battery Cost euros/cycle/brated
Model Cost/kWh Cost/kWh (Cbat/kWh) (Ccyc)

0.25C-0.25C 25 400 425 0.1062
1C-1C 100 600 700 0.1750
2C-2C 200 700 900 0.2250

A. Co-Optimization and storage profitability

The co-optimization results for each prosumer are presented
in Tables V, VI, VII and VIII. U2, U3, U8 and U12 belong to
categories C1, C2, C3 and C4, respectively.

TABLE V
(C1) U2: PV GENERATION SLIGHTLY MORE THAN INELASTIC LOAD

Case GPD GT Pcyc Cycles ExPB SS Waste
Euro Euro (years) (%) (kWh)

Load + PV - - - - - 26.82 57.4
1 kWh Battery

0.25C-0.25C 0 10.13 0.1675 37.01 3.50 31.91 30.12
1C-1C 1.39 13.79 0.0867 52.70 4.23 33.56 18.59
2C-2C 2.85 15.48 0.0536 55.56 4.84 33.69 15.39

2 kWh Battery
0.25C-0.25C 1.39 15.83 0.0798 42.53 4.47 34.96 12.97

1C-1C 2.85 19.26 0.0355 45.75 6.06 35.85 5.15
2C-2C 2.85 19.33 -0.016 46.24 7.76 35.88 3.96

5 kWh Battery
0.25C-0.25C 1.39 22.46 0.0288 33.27 7.88 36.38 0.39

1C-1C 2.85 24.67 -0.0295 33.91 11.82 36.29 0.19
2C-2C 2.85 24.67 -0.0795 33.91 15.20 36.29 0.18

The best-suited battery is selected based on: (P1) profit per
cycle per unit capacity, (P2) cycles of operation and (P3)
expected payback period.

The best-suited battery for U2, U3, U8 and U12 are marked
in bold in Tables V, VI, VII, and VIII respectively. For battery
installation to make sense the value of Pcyc should be positive
and ExPB should be lower than 7 years (i.e. the calendar life
of battery). For prosumer U2 5 batteries satisfy the feasibility

criteria. However, the best-suited battery will vary with prefer-
ence. For instance if payback period is priority the U2 should
select 1 kWh 0.25C-0.25C battery. Note that the marginal value
of storage decreases with increase in ramping capability and
charge capacity. Thus if Pcyc is used to select the battery then
slowest ramping battery with smallest capacity will be selected.

The self-sufficiency increases with increase in battery capac-
ity and ramping capability thus the wasted excess generation
decreases.

TABLE VI
(C2) U3: ACTIVE LOAD MANAGEMENT TO REDUCE EXCESS GENERATION

Case GPD GT Pcyc Cycles ExPB SS Waste
Euro Euro (years) (%) (kWh)

Load + PV - - - - - 32.71 2.72
1 kWh Battery

0.25C-0.25C 0 7.57 0.1715 27.26 4.68 32.73 0.01
1C-1C 0 8.13 0.0197 41.76 7.18 32.53 0
2C-2C 0 8.14 -0.0318 42.13 9.21 32.52 0

2 kWh Battery
0.25C-0.25C 0 9.74 0.0791 26.28 7.27 32.09 0

1C-1C 0 10.07 0.0065 27.74 11.59 32.04 0
2C-2C 0 10.07 -0.0436 27.76 14.90 32.04 0

5 kWh Battery
0.25C-0.25C 0 13.92 0.0189 22.25 12.72 30.66 0

1C-1C 0 14.02 -0.05 22.43 20.80 30.64 0
2C-2C 0 14.02 -0.1 22.43 26.75 30.64 0

TABLE VII
(C3) U8: COMPARABLE GENERATION AND LOAD WITH AVERAGE LOAD

HIGHER THEN C1,C2 AND C4

Case GPD GT Pcyc Cycles ExPB SS Waste
Euro Euro (years) (%) (kWh)

Load +PV - - - - - 28.02 58.14
1 kWh Battery

0.25C-0.25C 0 35.62 0.8589 36.91 0.99 28.71 40.68
1C-1C 0 39.42 0.4543 62.64 1.48 29.42 22.69
2C-2C 0 40.02 0.3765 66.53 1.87 29.57 17.88

2 kWh Battery
0.25C-0.25C 0 40.04 0.2941 50.01 1.77 29.21 27.27

1C-1C 0 44.36 0.1842 61.75 2.63 29.79 10.73
2C-2C 4.31 48.70 0.1774 60.51 3.08 29.79 9.09

5 kWh Battery
0.25C-0.25C 0 50.44 0.1117 46.30 3.51 29.90 4.80

1C-1C 4.31 58.64 0.1106 41.06 4.97 29.80 1.54
2C-2C 4.31 58.65 0.0598 41.18 6.39 29.80 1.36

TABLE VIII
(C4) U12: PV GENERATION SIGNIFICANTLY MORE THAN INELASTIC LOAD

Case GPD GT Pcyc Cycles ExPB SS Waste
Euro Euro (years) (%) (kWh)

Load + PV - - - - - 47.84 158.1
1 kWh Battery

0.25C-0.25C 0 8.57 0.1922 28.69 4.13 56.91 126.13
1C-1C 0 9.49 0.1107 33.22 6.15 57.72 115.66
2C-2C 0 9.56 0.0739 35.55 7.85 57.84 106.63

2 kWh Battery
0.25C-0.25C 0 13.41 0.0566 41.19 5.28 65.00 97.50

1C-1C 0 13.84 0.0214 35.23 8.43 65.77 81.94
2C-2C 0 13.86 -0.0116 32.47 10.82 65.80 70.04

5 kWh Battery
0.25C-0.25C 0 18.28 -0.007 36.85 9.69 74.90 53.58

1C-1C 0 18.71 -0.0758 37.72 15.59 75.66 31.16
2C-2C 0 18.70 -0.1257 37.66 20.05 75.65 27.41

B. Friction Coefficient

The friction coefficient can help in reducing the cycles of
operation for cases where the battery is performing more number
of cycles compared to the value which matches the calendar life
degradation. For equalizing cycle and calendar life degradation
of the battery, it should perform ≈ 47.6 cycles in 1 month
(considering 4000 as cycle life at 100% DoD and 7 years as
calendar life). From Tables V, VI, VII, and VIII it is clear that



inclusion of friction coefficient for limiting cycles of operation
is only relevant for 1 and 2 kWh batteries for U8 and 1 kWh
battery for U2, as for these case the battery is operating more
number of cycles than the optimal value of 47.6 cycles in a
month (marked in red). Table IX compares the tuned friction
coefficients for batteries which performed more cycles than
expected. Note that friction coefficient can only reduce cycles
of operation, therefore it is only applicable when the battery is
over-performing. Inclusion of ηfric for over-performing batteries
increases Pcyc, however, also increases ExPB.

TABLE IX
FRICTION COEFFICIENT.

Battery ηfric Profit Pcyc SS Waste Cycles ExPB
Model euros (%) (kWh) yrs.

For prosumer U2
1kWh,1C-1C 0.796 12.85 0.0962 32.45 25.70 47.38 4.54
1kWh,2C-2C 0.797 14.45 0.0796 32.53 24.99 47.44 5.19

For prosumer U8
1kWh,1C-1C 0.796 38.17 0.6805 29.33 26.82 44.62 1.53
1kWh,2C-2C 0.796 38.50 0.5829 29.37 25.16 47.65 1.95
2kWh,1C-1C 0.9398 43.98 0.3143 29.67 13.71 52.29 1.61
2kWh,1C-1C 0.9397 43.47 0.3286 29.73 14.34 43.17 2.68
2kWh,2C-2C 0.9397 47.85 0.3228 29.76 12.91 43.68 3.13

VI. CONCLUSION

The profitability of investment in storage is a crucial factor
for deciding future investment in batteries. In this paper, we
co-optimize storage in the context of power network norms in
Madeira. The batteries are used for performing energy arbitrage,
increasing self-sufficiency and peak demand reduction.

The proposed formulation prioritizes self-sufficiency over
energy arbitrage, thus minimizing the excess production at the
prosumer end. Four types of prosumers are selected based on
the different relationship between inelastic load and renewable
generation to identify the value of storage.

It is observed that the marginal value of installing battery
decreases with storage size and ramping capability. We observe
that value of storage for an average net-load comparable to
storage ramping rate leads to profits several folds higher than
for otherwise. Faster ramping batteries perform much more
number of cycles which deteriorates the profit made per 100%
DoD cycles per unit of storage capacity making such batteries
financially unviable.

We propose the inclusion of friction coefficient which reduces
the cycles of operation by eliminating storage operations for low
returning transactions thus increasing the profit per cycle per unit
of storage capacity and makes such batteries more profitable,
however, it increases the payback period.
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