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ABSTRACT
Large scale renewable energy source (RES) integration planned
for multiple power grids around the world will require additional
resources/reserves to achieve secure and stable grid operations to
mitigate the inherent intermittency of RES. In this paper, we present
formulations to understand the effect of fast storage reserves in
improving grid reliability under different cost functions. Our for-
mulations not only aim to minimize imbalance but also maintain
state-of-charge (SoC) of storage. The proposed approaches rely on
a macroscopic supply-demand model of the grid with total power
output of energy storage as the control variable. We show that
accounting for system response due to inertia and local governor
response enables a more realistic quantification of storage require-
ments for damping net load fluctuations. Simulation case studies
are embedded in the paper by using datasets from the Elia TSO in
Belgium and BPA in the USA. The numerical results benchmark
the marginal effect on reliability due to increasing storage size
under different system responses and associated cost functions.
Further we observe myopic control of batteries proposed approxi-
mates deterministic control of batteries for faster time scale reserve
operation.

CCS CONCEPTS
• Software and its engineering→ Power management; Real-time
systems software.
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1 INTRODUCTION
Massive installation of solar and wind resources in power grids is
slated to replace conventional sources of power. As renewable gen-
eration is a function of weather parameters such as solar irradiance
and wind speed, such sources are inherently uncertain/stochastic.
For instance, solar generation could fluctuate more than 70% due
to passing clouds during daytime and wind generation could ramp
down 100% due to loss of wind [9]. As the share of renewable gener-
ation has increased, the amount curtailment has also proportionally
increased, with a total cumulative curtailed energy of 1817 GWh
from May 2014 to April 2019 in CAISO [4].

Traditional resources, due to the presence of rotation mass, pro-
vide system inertia to counter fluctuations [22]. The absence of iner-
tia in several inverter corrected renewable resources compounds the
problem of managing variability, when penetration levels increase
further [11]. To ensure power system reliability, utilities have to
hold ramp-up and ramp-down reserves in order to compensate for
sudden loss of renewable generation. The authors in [18] observe
that, to accommodate 15% of wind generation, traditional reserves
have to be increased upto 9%. In order to compensate the renewable
volatility and avoid massive reserve procurement, additional fast
ramping resources, with associated performance based payments
[31] are being incorporated. The authors in [17] observe that en-
ergy storage systems can mitigate issues with large scale renewable
integration due to their fast ramping. Falling cost of Li-Ion batteries
(and other energy storage technologies) has encouraged the bulk
installation of batteries for this purpose [3]. While it is true that
increasing energy storage can in theory lead to improvement in
reliability, their true performance depends on available conven-
tional responsive resources. Following a net imbalance in injection,
the complete system response, due to conventional generation and
fast ramping batteries, determines the dynamics in operational fre-
quency, including the maximum deviation in frequency (termed
’nadir’) and the time to reach there [22]. This is utilized by grid
operators to determine reserves necessary to ensure secure opera-
tions [8]. The overarching goal of this work is to quantify the effect
of storage, including its marginal value, on reliability by account-
ing for the system response in the presence of system inertia and
generator governors.

1.1 Prior Work
Optimization of storage operations is a growing field of research.
Storage usage for arbitrage and peak shaving operates at a slower
time scale (minutes-hours to weeks) and has been analyzed in
[6, 14, 16, 23, 26, 28]. In work associated with storage usage for
reliability, the authors in [5] consider investor-owned reserves that
perform bidding to profitably provide balancing services [15]. In
[27], storage along with energy dissipating resistors are used for
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primary frequency control. The authors of [21] use energy stor-
age for providing inertial response along with primary frequency
regulation and show that response similar to conventional power
plants can be derived. [30] looks at the impact of energy storage
parameters such as capacity, ramping parameters and conversion
efficiency on the impact of renewable integration. [7] observes that
myopic control algorithms for storage operation can approximate
deterministic solution for cases with small time-difference between
decisions. [29] looks at the utility’s problem of minimizing power
imbalance by using storage devices and presents threshold based
control rules, however they ignore system response in their analysis.
[10] shows that reserve sizing based onworst-case imbalance would
not be financially plausible. Bringing the reliability requirement
and system response into the picture can help in understanding the
marginal increase in reliability due to integrating energy storage
as reserves.

1.2 Contributions of the paper
We consider centralized optimization of utility owned/operated
storage for improving grid reliability. While the profitability of
battery is crucial, we assume payment for capacity to owners and
do not include electricity prices while optimizing storage actions
in real-time [31]. Rather, we are interested in identifying marginal
system-wide reliability improvement due to available storage. We
first justify a relaxed system reliability index measured in terms of
net power balance that is principally aware of the conventional bulk
system response due to inverters and governors. For both linear
and quadratic cost functions of net imbalance, we present convex
but non-smooth optimization formulations for real-time storage
operation. The storage optimization problem can also incorporate
state of charge (SoC) based constraints to ensure ramping availabil-
ity during unexpected large imbalances. We present McCormick
relaxation and threshold based exact schemes for our formulations,
and benchmark the performance with respect to different reliability
metrics, using real imbalance information from two regions: (a)
Elia TSO in Belgium and (b) BPA (Bonneville Power Administra-
tion) in USA. Our work demonstrates that while increase in storage
improves reliability, the marginal value of integrating storage de-
teriorates with the storage size. More importantly, the computed
decrease in marginal benefit is more severe for systems with higher
system response. As our optimal solutions are deterministic and
require information of all fluctuations, we compare them with a
myopic storage algorithm that uses only current information. We
observe that due to significantly fast operation of reserves, the
myopic storage operation approaches the reliability improvements
in the deterministic solutions, and hence can be used for real-time
operation.

The rest of the paper is organized as follows. Section II introduces
the reliability indices used and the formulations of the response
aware storage operation to reduce imbalance. Section III provides
optimization formulation for storage as reserve for different cost
function. Section IV provides case studies for Elia in Belgium and
BPA in the USA respectively. Section V concludes the paper.

2 RELIABILITY OF POWER GRIDS
The system average interruption duration index, SAIDI [1], is com-
monly used as a reliability indicator by electric power utilities.

SAIDI is the average outage duration for each customer served and
is given as:

SAIDI =
Sum of customer interruption duration
Total number of customers served

=

∑
UiNi
CT

(1)

where Ni is the number of consumers for the outage time Ui for
incident i . CT is the total number of customers served. We define
reliability index (RI) as

RI =
(
1 −

SAIDI in units of time
Time horizon for calculating SAIDI

)
(2)

Almost all developed countries have a power system reliability
higher than 99.9%, that is expected to be ensured in the presence
of renewables [1]. For research purposes, the detailed real-world
information for faults and consumers affected by each fault needed
for calculating SAIDI may be hard to get. Therefore, we redefine
SAIDI in terms of the power imbalance in demand and supply
relative to the aggregate load. We define residual R(i) = ∆i + si ,
where ∆i and si denote net imbalance (without storage) and storage
power output at time i , respectively. For our system,modified SAIDI
is defined as

SAIDImod =

∑NT
i |R(i)|

P̄д(i)
(3)

where NT is the total number of samples in the time horizon for
SAIDI computation. P̄д is the mean of active power and is given as

P̄д =
1
NT

NT∑
i=1

Pд(i). (4)

Note that the sample based SAIDI definition, similar to the cost
function in [29], intuitively assumes that the number of customers
interrupted is captured in the size of power imbalance in the sys-
tem. While our reliability measure increases with decreasing net
imbalance, it does not account for the system response following
an imbalance.

Including system response in reliability: In power grids, de-
mand and supply are matched approximately at every time instant
to maintain frequency within a narrow band as listed in Table 1. Ro-

Table 1: Continuous operating frequency range

Country COFR
Germany[24], China [19] 49.5 to 50.5 Hz

Australia [19] 47 to 52 Hz
A-zone: 59.95 to 60.05 Hz,

USA [24] B-zone:59.8-59.95 & 60.05-60.02 Hz,
C-zone: <59.8 Hz & >60.02Hz

tational generators such as synchronous and induction machines in
the grid provide an inherent rotational inertia as well as governor
feedback (called Primary Frequency Control) that act to correct the
operating frequency f (t), following imbalance. This dynamics is
modelled by the Swing equation [8, 22]:

d f (t)

dt
=

1
MH

(Pm (t) − Pe (t)), (5)

where Pm and Pe are the system’s mechanical power and electrical
load.MH is the inertia in the system. Considering a system-wide
ramp rate of C MW/s that provides frequency damping services,
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the frequency nadir fmin reached due to a net imbalance/residual
R(i) in the system is given by (see [8] for the derivation):

MHC =
R(i)

2(f0 − fmin − fdb )
. (6)

Here f0 is the normal operating frequency, while fdb is the dead-
band frequency for governor response. This is derived in [8] by first
determining the time to reach the frequency nadir from the event
beginning and then using that to determine the system frequency.
The operation of the primary response takes places within the first
30 seconds following an imbalance, as shown in Fig. 1. Note that a
similar analysis can be conducted for frequency incursion above the
rated frequency. If system inertia and ramp rates of different con-
ventional generators are comparable (else consider the minimum
per mW), then the total system inertiaMH and ramp rates C can
each be considered proportional to the total scheduled generation
Pд in the system. Going forward to regimes with similarly sized
local generation (Eg. networked micro-grids), one can approximate
MHC with a constant times P2

д , the square of the total system load.
Consider a pre-fixed maximum frequency deviation f0 − fmin for
system safety. As dead-band fdb is pre-determined, it follows from
Eq. (6) that the maximum imbalance R(i) that the grid can safely
sustain, is proportion to the scheduled system load or generation,
as noted below.

−ϵPд ≤ R(i) = ∆(i) + si ≤ ϵPд (7)

Here ϵ is a constant that depends on system inertia and ramp rate.
ϵ tends to 0 as the RES share tends towards 100% in the power
network. Note that conservative operators can determine a lower ϵ
to be on the safe side. To account for the system safety for small
imbalances below ϵPд , we modify the SAIDImod formula in Eq. (3)
and define response-aware SAIDImod

ϵ below.

SAIDImod
ϵ =

∑
i max(|R(i)| − ϵPд(i), 0)

P̄д(i)
(8)

Using Eqs. (2,3,8) the reliability for our system, with and without
response awareness, are respectively given by

RImod =

(
1 −

1
NT

∑
i |R(i)|

P̄д(i)

)
=

(
1 −

∑
i |R(i)|∑
i Pд(i)

)
, (9)

RImod
ϵ =

(
1 −

∑
i max(|R(i)| − ϵPд(i), 0)∑

i Pд(i)

)
. (10)

  

Figure 1: Reserves activation during a contingency [20]
Time-scale of battery operation: Note that we assume stor-

age operation to be without delay after an imbalance is observed.
In practice, such seamless storage operations can be conducted

through rate of change of frequency (RoCoF) measurements [12]
directly or through the use of phasor measurement devices. In the
next section, we describe the storage optimization problems that
consider the defined reliability functions RImod and RImod

ϵ (with
response awareness).

3 OPTIMIZATION OF STORAGE
In this section, we outline optimization formulations for battery
performing supply-demand balancing considering (a) linear or qua-
dratic cost function for minimizing imbalance, (b) response of the
power network, (c) maintaining the SoC of the battery. While we
first consider optimal deterministic solutions schemes over a time-
horizon with perfect information of fluctuations, in real-world fu-
ture information will not be available. Thus, we also provide myopic
rule-based real-time algorithms and benchmark them against the
optimal deterministic formulations. For normalized time-instance
i , the battery energy bi and power output si needs to satisfy the
following constraints:

bi ∈ [bmin,bmax], si ∈ [Smin, Smax] (11)
bi = bi−1 +max(si , 0)ηch − max(−si , 0)/ηdis . (12)

where Eq.(11) reflects the bounds on bi and si , and Eq.(12) describes
the linear dynamics inbi . ηch and ηdis are the efficiencies of battery
charging and discharging. State-of-charge of battery at time i is

SoCi = bi/brated, (13)
where brated denotes the rated battery capacity.

3.1 Linear Cost Function
The linear cost function follow from the definition of RImod and
RImod
ϵ in Eqs. (9) and (10) respectively. Under response awareness,

the cost for imbalance below a threshold is 0. We first describe the
case where system response is not considered in storage operation.

3.1.1 Reliability without response awareness. The optimization
problem (PL) is given as

(PL) min
N∑
i=1

|∆i + si |, subject to (11, 12)

Note that for a linear cost function, the non-zero net/marginal
improvement made in reducing imbalance is the same irrespective
of time-instant or overall imbalance magnitude. Thus, storage can
be operated myopically considering only the current imbalance,
using thresholds, as described in Algorithm 1.

Algorithm 1 Linear Cost without Response
Inputs: ∆ = (∆1, ∆2, . . . , ∆N ), b0, Parameters:

bmax, bmin, δmax, δmin, ηch, ηdis
Outputs: s∗=(s∗1, s

∗
2, .., s

∗
N ), b∗=(b∗1, b

∗
2, .., b

∗
N )

1: if ∆i > 0 then s∗i = max {−∆i , δminhηdis , (bmax − bi−1)ηdis }.
2: else s∗i = min {−∆i , δmaxh/ηch, (bmin − bi−1)/ηch }.
3: end if
4: Update b∗i = b

∗
i−1 +max(s∗i , 0)ηch − max(−s∗i , 0)/ηdis .

5: Increment i = i + 1.
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3.1.2 Reliability with response awareness. Based onRIϵ (see Eq. (10)),
the optimization problem here is given by:

(PϵL ) min
N∑
i=1

{max(|∆i + si | − ϵPд(i), 0)}, subject to (11, 12)

Problem (PϵL ) can also be solved by a rule-based policy given in
Algorithm 2 that differs from Algorithm 1 due to ϵ-induced thresh-
olding in the cost-function.

Algorithm 2 Linear Cost with Response
Inputs: ∆ = (∆1, . . . , ∆N ), b0, Parameters:

bmax, bmin, δmax, δmin, ηch, ηdis
Outputs: s∗=(s∗1, s

∗
2, .., s

∗
N ), b∗=(b∗1, b

∗
2, .., b

∗
N )

1: if ∆i > ϵPд (i) then
2: s∗i = max

{
−∆i + ϵPд (i), δminhηdis , (bi−1 − bmax)ηdis

}
,

3: else if ∆i ∈ (−ϵPд (i), ϵPд (i)) then s∗i = 0,
4: else s∗i = min

{
−∆i − ϵPд (i), δmaxh/ηch, bi−1 − bmin/ηch

}
.

5: end if
6: Update b∗i = b

∗
i−1 +max(s∗i , 0)ηch − max(−s∗i , 0)/ηdis .

7: Increment i = i + 1.

3.2 Quadratic Cost Function
We now describe optimal storage actions where the cost for imbal-
ance is quadratic. In this setting, imbalance minimization at larger
imbalances are prioritize for storage operation.

3.2.1 Reliability without response awareness. The optimization
problem for storage without response awareness is formulated
as:

(PQ ) min
N∑
i=1

(∆i + si )
2, subject to (11, 12)

Clearly, look-ahead is essential for solving (PQ ), unlike (PL). How-
ever, standard convex optimization is sufficient to solve it as the
cost function is smooth.

3.2.2 Reliability with response awareness. Under knowledge of
system response, we use a quadratic cost that ignores imbalances
below ϵPд(i), similar to the linear setting. The optimization problem
is given by:

(PϵQ ) min
N∑
i=1

{max(|∆i + si | − ϵPд(i), 0)}2, subject to (11, 12)

The cost function in (PϵQ ) is not smooth due to the absolute value
operator. We use θi to denote max(|∆i + si | − ϵPд(i), 0), and then
derive a McCormick relaxation [25] scheme for the absolute value
operator to solve (PϵQ ), as described below.

(PϵQ1) min
N∑
i=1

θ2
i , subject to (a) (11), (b) (12),

(c) θi ≥ 0, θi ≥ 2zi (∆i + si ) − (∆i + si ) − ϵPд(i),

(d) McCormick Constraints for yi = zi (∆i + si )

yi ≥ ∆lbi zi , yi ≥ (∆i + si ) + ∆
ub
i zi − ∆ubi

yi ≤ ∆ubi zi , yi ≤ (∆i + si ) + ∆
lb
i zi − ∆lbi

(e) Binary variable: 2yi − (∆i + si ) ≥ 0.

where ∆lbi = ∆i + Smin, ∆ubi = ∆i + Smax, zi denotes a binary vari-
able which is equal to 1 when net imbalance with storage, (∆i + si )
is positive. Note that the McCormick relaxation is used to approx-
imate the values of a bilinear variable by creating a quadrilateral
feasible space bounded by 4 constraints derived using the upper
and lower limits of the individual variables in the bilinear variable.
This form is exact when one of the variables in the bilinear form is
binary [25]. Here yi = zi (∆i + si ) has a binary component zi .

Note that the storage SoC is not included in the optimization
problems discussed till now. An operator may be interested in
keeping SoC within a certain band to ensure available storage for
future unforecasted large fluctuations. Next we discuss formulations
where SoC targets are promoted through penalized SoC deviations.

3.3 Reliability with response awareness and
SoC management

Consider the setting where storage SoC needs to be maintained
within a band, denoted as [SoCl , SoCu ], where SoCl , SoCu denote
the lower and upper boundaries, and mean SoC level is denoted as

¯SoC = 0.5×(SoCl +SoCu ). We defineγ asγ = ¯SoC−SoCl = SoCu−
¯SoC. Denote θi = max(|∆i +si | −ϵPд(i), 0) and βi = λ max(|SoCi −
¯SoC| − γ , 0). The objective of storage optimization under response

awareness and SoC management for linear cost for imbalance is
given as

(PϵLS ) min
N∑
i=1

{θi + βi }, subject to (11, 12, 13).

On the other hand, the objective with quadratic cost for imbalance
is given as

(PϵQS ) min
N∑
i=1

{θi + βi }
2, subject to (11, 12, 13).

Note that with SoC management, the optimal solutions for both
linear and quadratic cost formulations do not have an optimal
myopic form.We, thus, revert to twoMccormick relaxation schemes
to overcome the non-smooth parts of the cost function (one for
reliability, another for SoC). The additional associated constraints
for both PϵLS and PϵQS are given by:

(c) θi ≥ 0, θi ≥ 2z1
i (∆i + si ) − (∆i + si ) − ϵPд(i),

(d) βi ≥ 0, βi ≥ 2z2
i SoCi − 2z2

i
¯SoC − SoCi + ¯SoC − γ ,

(e) McCormick Constraints for y1
i = z1

i (∆i + si )

y1
i ≥ ∆lbi z1

i , y1
i ≥ (∆i + si ) + ∆

ub
i z1

i − ∆ubi

y1
i ≤ ∆ubi z1

i , y1
i ≤ (∆i + si ) + ∆

lb
i z1

i − ∆lbi

(e) McCormick Constraints for y2
i = z2

i SoCi
y2
i ≥ SoCminz

2
i , y2

i ≥ SoCi + SoCmaxz
2
i − SoCmax

y2
i ≤ SoCmaxz

2
i , y2

i ≤ SoCi + SoCminz
2
i − SoCmin

(e) Binary variable:
2y1

i − (∆i + si ) ≥ 0,

2y2
i − SoCi ≥ 0.

where ∆lbi = ∆i + Smin, ∆ubi = ∆i + Smax, z1
i denotes a binary

variable which is equal to 1 when (∆i + si ) is positive. z2
i denotes

another binary variable which is equal to 1 when SoCi − ¯SoC ≥ 0
is positive.
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3.4 Myopic control considering SoC & inertia
Storage control in the real-world will not have access to accurate
information of future imbalances. In those settings, optimal solu-
tions for problems (PϵLS ) and (P

ϵ
QS ) that require perfect information

will not be practical. Instead, we propose a myopic Algorithm 3 in
this section, for linear cost on reliability with response awareness
and SoC management. Algorithm 3 is thus an extension of Algo-
rithm 2. It uses the current information (SoC and imbalance in the
power network) and network response to make charge/discharge
decisions to minimize the imbalance. When the imbalance is within
bounds (see Eq. (7)), it also attempts to keeps the SoC within the
desired SoC band. Lines 3 to 6 decides whether the SoC is outside
the target band. The SoC target band is decided based on battery
type. For example, LiIon battery cannot be over-charged above an
SoC level or over-discharged below a certain level [13]. Similarly,
the zones for imbalance is identified in Algorithm 3’s lines 7 to
11. The storage operation is further constrained by capacity and
ramping constraint. Based on the SoC and imbalance levels des-
ignated by FlagSoC and Flag∆ respectively, different combinations
are possible. The respective actions under each case are described
in lines 12-34 of the pseudo code. The algorithm can be similarly
extended to derive a sub-optimal myopic policy for quadratic costs.
In the next section, we provide simulation results on benefits from
storage usage in reliability using real power grid imbalance data.
4 NUMERICAL SIMULATIONS
To compare benefits from our optimization algorithms for different
cost functions and constraints, we use following performance in-
dices: (a) Linear deviation: (λlinear) equals

∑N
i=1{max(|∆i + si |−

ϵPд(i), 0)} × 100/P̄д(i),
(b) Quadratic deviation: (λquad) equals

∑N
i=1{max(|∆i + si | − ϵPд(i)

, 0)}2 × 100/(P̄д(i))2,
(c) SAIDImod

ϵ and Reliability index RImod
ϵ , and (d) Mean SoC.

4.1 Imbalance minimization in Elia, Belgium
The data considered in this case study is from the month of January
2019. Fig. 2 shows the aggregate load, demand and supply imbalance
and the imbalance in percentage with respect to the aggregate load.
Without storage, the reliability RImod is equal to 98.845%. SAIDImod

for this month is 515.5 minutes. Observe that at hour index 253, an
imbalance of the order of 17% with respect to the total load occurs,
due to a sudden loss of generation of approximately 2000 MW. The
reserve sizing necessary to completely mitigate this unbalance will
require an astounding ramping capability of 2000 MW or more.

The objective of study for the Elia data is to identify the marginal
value of adding storage as reserves, for different values of system
response, that is measured in terms of ϵ (see Eq. (7,8)). We vary ϵ
from 0 to 5% and implement the following 5 storage settings:
(i) No storage (nominal case), (ii) with 100 MW 1C-1C1, (iii) with
200 MW 1C-1C, (iv) with 500 MW 1C-1C, (v) with 1000 MW 1C-1C.

Fig. 3 belabors the fact that the benefit of storage sizing for
reliability is higher at lower ϵ (less conventional reserves), which is
the regime of operation for grids with high renewable penetration.

1Batterymodel xC-yCmeans that the battery takes 1/x hours to charge from completely
discharged state at the maximum charging rate and 1/y hours to discharge from
completely charged state at the maximum discharging rate

Algorithm 3Myopic Algorithm with Linear Cost with Response,
and SoC consideration

Inputs: ∆ = (∆1, ∆2, . . . , ∆N ), b0, Parameters:
bmax, bmin, δmax, δmin, ηch, ηdis, Initialize: SoCu, SoCl , brated

Outputs: s∗=(s∗1, s
∗
2, .., s

∗
N ), b∗=(b∗1, b

∗
2, .., b

∗
N )

1: Calculate SoCi = bi /brated and ¯SoC = 0.5 × (SoCl + SoCu )
2: if SoCi ≤ SoCl then FlagSoC = 1,
3: else if SoCi > SoCl and SoCi ≤ SoCu then FlagSoC = 2,
4: else FlagSoC = 3,
5: end if
6: ∆min = −ϵPд (i), ∆max = −ϵPд (i)
7: if ∆i ≤ ∆min then Flag∆ = 1,
8: else if ∆i > ∆min and ∆i ≤ ∆max then Flag∆ = 2,
9: else Flag∆ = 3,
10: end if
11: if FlagSoC == 1 and Flag∆ == 1 then Charge, s∗i =
12: max{min

{
δmaxh/ηch, (SoCu − SoCi )brated/ηch, −∆i − ϵPд (i)

}
, 0},

13: else if FlagSoC == 1 and Flag∆ == 2 then Replenish charge, s∗i =
14: max{min

{
δmaxh/ηch, ( ¯SoC − SoCi )brated/ηch, −∆i + ϵPд (i)

}
, 0},

15: else if FlagSoC == 1 and Flag∆ == 3 then
16: Do nothing, s∗i = 0,
17: else if FlagSoC == 2 and Flag∆ == 1 then Charge, s∗i =
18: max{min

{
δmaxh/ηch, (SoCu − SoCi )brated/ηch, −∆i − ϵPд (i)

}
, 0},

19: else if FlagSoC == 2 and Flag∆ == 2 then
20: if SoCi ≤ ¯SoC then Replenish charge, s∗i =
21: max{min

{
δmaxh/ηch, ( ¯SoC − SoCi )brated/ηch, −∆i + ϵPд (i)

}
, 0},

22: elseReplenish charge, s∗i =
23: min{max

{
δminhηdis , ( ¯SoC − SoCi )bratedηdis , −∆i − ϵPд (i)

}
, 0},

24: end if
25: else if FlagSoC == 2 and Flag∆ == 3 then Discharge, s∗i =
26: min{max

{
δminhηdis , (SoCl − SoCi )bratedηdis , −∆i − ϵPд (i)

}
, 0},

27: else if FlagSoC == 3 and Flag∆ == 1 then
28: Do nothing, s∗i = 0,
29: else if FlagSoC == 3 and Flag∆ == 2 then Replenish charge, s∗i =
30: min{max

{
δminhηdis , ( ¯SoC − SoCi )bratedηdis , −∆i − ϵPд (i)

}
, 0},

31: else if FlagSoC == 3 and Flag∆ == 3 then Discharge, s∗i =
32: min{max

{
δminhηdis , (SoCl − SoCi )bratedηdis , −∆i − ϵPд (i)

}
, 0},

33: end if
34: Update b∗i = b

∗
i−1 + [s

∗
i ]
+ηch − [s∗i ]

−/ηdis and Increment i = i + 1.

From Fig. 4, it is clear that the marginal benefit in reliability
due to storage decreases with increasing storage sizes, as expected.
However, note that the decay in marginal benefit due to increasing
storage is much sharper at higher system response ϵ . This suggests
that analysis on greater installation of storage in a grid should in-
volve thorough studies of current and future trends in conventional
reserve availability. The myopic control Algorithm 3 is used for
the optimization with linear cost, but takes into account system
response (ϵ = .5%) and SoC maintenance within 40% − 80% band.
Whenever the SoC dips below the minimum level or rises above the
maximum, the controller follows by re-adjusting the SoC, during
time instants when the imbalance Ri is within the response-aware
bound in Eq. (7).

4.2 Imbalance minimization in BPA, USA
We now consider the aggregated load and generation variation in
BPA, for 6 days starting from May 10 2019, collected from their
website [2]. Using this data, we compare the performance of our
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optimization schemes for linear and quadratic cost functions (with
differing system responses), for a 1C-1C battery of capacity 100
MW. The results are provided in Table. 2. Observe that the reliabil-
ity RImod

ϵ for the myopic scheme with linear costs with response
awareness and SoC, approaches that of the deterministic scheme
that uses full information of all fluctuations. Note that the RImod

ϵ
for no storage case for ϵ = 0.05 is 99.9197 %. For deterministic
linear cost function RImod

ϵ = 99.965 %, for quadratic cost func-
tion RImod

ϵ = 99.966 %. For cost functions also considering SoC
regulation constraint the reliability improvement for linear and
quadratic deteriorates to 99.923. All the above results are for deter-
ministic (complete information) setting. In comparison, the myopic
algorithm with no look-ahead provides a reliability level of 99.943.
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Figure 2: Load and percentage of imbalance in Elia on January
2019. Loss of a generation (≈ 2000MW) on 10th January 2019 around
13:00h; the load curve is not affected as the generation loss happens.
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Figure 3: Reliability (RImod
ϵ ) and SAIDImod

ϵ calculated with
varying system response (ϵ) and storage size in Elia.

Although, slightly lower than linear and quadratic cost functions,
it is superior compared to deterministic setting with SoC regulation.
Themyopic algorithm performs significantly well primarily because
of the fast sampling time. A similar observation is made in [7] where
myopic stochastic control has an optimality gap of less than 4%
compared to the ground truth.
5 CONCLUSION AND PERSPECTIVES
The paper presents algorithms for control of energy storage for
minimizing macroscopic demand and supply imbalance. Through
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Figure 4: Marginal improvement in reliability with energy
storage in Elia.

Table 2: Performance Indices for BPA for period 10 to 15May
2019; 1C-1C battery of capacity 100 MW.

Optimization ϵ λlinear λquad ¯SoS SAIDImod
ϵ RImod

ϵ

No storage 0 3245.7 114.5 - 32.45 98.1228
0.001 3077.1 108.1 - 30.77 98.2203
0.005 2480.7 85.6 - 24.81 98.5652
0.01 1893.8 63.5 - 18.94 98.9047

Linear + 0 1295.1 48.1 0.6567 23.18 98.6592
response 0.001 2168.2 85.2 0.4060 21.68 98.7460

0.005 1656.1 62.2 0.3958 16.562 99.0421
0.01 1183.9 41.4 0.3939 11.839 99.3153

Quadratic 0 1171.0 32.9 0.5222 23.23 98.6564
with 0.001 2165.0 62.9 0.5146 21.60 98.7505
response 0.005 1656.0 47.5 0.5096 16.52 99.0447

0.01 1188.6 33.1 0.4963 12.03 99.3044
Linear + 0.001 2175.4 81.8 0.6220 29.95 98.2681
response 0.005 1689.6 61.6 0.6496 24.01 98.6110
+ SoC 0.01 1214.0 42.7 0.6722 16.02 99.0732
Quadratic 0.001 2168.7 62.9 0.5210 22.28 98.7112
+ SoC + 0.005 1685.6 47.6 0.5590 19.62 98.8649
response 0.01 1211.9 33.1 0.6063 15.98 99.0756
Myopic 0 1436.7 50.6 0.6377 23.18 98.6592
with linear 0.001 1437.2 50.6 0.6394 22.80 98.6811
+ Response 0.005 1440.8 51.4 0.6164 20.35 98.8228
+ SoC 0.01 1417.5 51.7 0.6278 15.818 99.0851

theoretical motivation corroborated with numerical simulations, we
show that the system dynamic response due to inertia and governor
control, impacts the effect of storage in improving grid reliability. In
particular, the marginal reliability benefit due to increasing storage
decays rapidly for systems with higher conventional reserves. For
real-time optimization of storage, we present myopic alternates to
deterministic storage algorithms requiring full information, and
show their comparable performance using real data from Elia, Bel-
gium and BPA, USA. Furthermore, we demonstrate that storage
control algorithms can maintain SoC without significant loss in
reliability performance.

In future work, we plan to theoretically study the relationship
between variance of stochastic imbalances, and response aware
storage operation. Moreover, we plan to extend our numerical anal-
ysis to smaller grids/micro-grids with greater fraction of inverter-
connected generation, and study financial incentives to maximize
reliability performance from storage.
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