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Introduction
This work proposes a framework to select the best-suited battery for
co-optimizing for peak demand shaving, energy arbitrage and increase
self-sufficiency in the context of power network in Madeira, Portugal.
• Uses profit per cycle per unit of battery capacity and expected

payback period as indices for selecting the best-suited storage pa-
rameters to ensure profitability.
• Introduces a friction coefficient to increase the value of stor-

age by reducing the operational cycles and eliminate low returning
transactions.

Context and Data Collection
The power network in Madeira Archipelago imposes [1]:
• Zero feed-in-tariff;
• Time-of-Use (ToU) electricity prices for consumption (Fig. 1);
• 8 levels of Peak Power Consumption (PPC): 3.45, 4.6, 5.75, 6.9,

10.35, 13.8, 17.25 and 20.7 kVA width daily cost of 0.1643, 0.2132,
0.2590, 0.3080, 0.4532, 0.5981, 0.7436 and 0.8892 respectively.
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Figure 1: Time-of-use (ToU) electricity prices.

The development of better control strategies for battery energy stor-
age systems (BESS) is one of the goals of H2020 SMILE (https:
//www.h2020smile.eu), an EU co-funded research project.
Under the scope of SMILE, PV production (PV) and power con-
sumption (Load) measurements were taken from 14 prosumers in
the island [2, 3]. The prosumers are categorized based on their in-
elastic load and PV generation:
• (A) PV generation slightly higher than the inelastic load;
• (B) Active management of load to match PV generation;
• (C) PV generation comparable to inelastic load;
• (D) PV generation significantly higher than the inelastic load.

In this work, one prosumer was selected from each category (Fig. 2).
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Figure 2: PV and inelastic load for 4 types of prosumers.

System Model and Storage
Co-Optimization

System and Battery Model
At time instant i, the information available is the end user consump-
tion di, the renewable generation ri and the storage energy output
si.
• Load without storage: zi = di − ri
• Load seen by grid: Li = di − ri + si
• Efficiency of charging and discharging: ηch, ηdis ∈ (0, 1]

• Change in battery energy level: xi=hδi, where δi denotes stor-
age ramp rate at time instant i such that δi ∈ [δmin, δmax], ∀i.
• The energy output of storage in the ith instant: si =

[xi]
+

ηch
− ηdis[xi]

−, where [x]+=max(0, x) and [x]−=−min(0, x)

The ramping constraint induce limits on si given by
si ∈ [δminhηdis, δmaxh/ηch], ∀i. (1)

The energy stored in the battery is denoted as bi, defined as
bi = bi−1 + xi. The battery capacity constraint is given as

bi ∈ [bmin, bmax], ∀i. (2)
where bmin and bmax are minimum and maximum permissible battery
charge levels respectively.

We use xC-yC notation to represent the relationship between ramp
rate and battery capacity. xC-yC implies battery takes 1/x hours to
charge and 1/y hours to discharge completely.

Co-Optimization Formulation
The co-optimization formulation is developed in [1] and given as

(Popt) minimize
si

N∑
i=1

pelec(i)θi(si)h (3a)

subject to
Ramping constraint, Eq. 1 , (3b)
Capacity constraint, Eq. 2, (3c)

Self-sufficiency, θi(si) ≥ 0, (3d)
Arbitrage, θi(si) ≥ [zi + si], (3e)

Peak shaving, [zi + si]/h ≤ Psetmax (3f)
where θi(si) = max(0, zi + si).
• The PPC threshold, Psetmax, is selected close to the power level

(Pmax + δmin), subject to Psetmax ≥ (Pmax + δmin).
• Psetmax is selected by the electricity consumer as a PPC contract

with the utility in Madeira.
• Note that the formulation prioritizes self-consumption over

arbitrage.

Co-Optimization with Control of Cycles
Following prior work [4], we define a friction function for the ac-
tive power to model the degradation due to cycles of operation as
Pifric =

[PiB]
+

ηfric
− [PiB]

−ηfric.

• In the original formulation (Popt) the constraint Eq. 3e is modi-
fied as θi≥ [zi + P

i
fric].

• The friction coefficient takes a value from 1 to 0.
• ηfric needs to be tuned so as the operational life is increased by

matching calendar and cycle degradation [4].
• If the battery is not over operating then ηfric is set to 1.
• For cases where the battery is over-performing, the low returning

transactions is eliminated by decreasing value of ηfric.

Energy Storage Profitability

Cost of Storage (inverter + battery)
• Cost of Inverter: 100 euros/kWh (6kW SMA Sunny Boy 2.0 [5]);
• Li-Ion battery: two components: (a) capacity cost and (b) ramp-

ing capability cost, [6];
• The storage cost for per kWh in euros is given as:

Storage Cost = 300+ 0.25 max(x, y)100 per kWh, (4)
where x, y denotes the charging and discharging rates as described
in the battery model xC-yC.

Profit Considering Degradation
• Battery cycle life equals 4000 cycles at 100% DoD;
• Calendar life equals 7 years.

Considering the Euros per cycle per rated battery capacity for differ-
ent ramping batteries listed in Table 1, the battery should per-
form ≈47.6 cycles per month in order to last 7 years and
make more than the values listen in Table 1 to be profitable.

Table 1: Storage profitability with different ramping per kWh
Battery Inverter Battery Battery Cost euros/cycle/brated
Model Cost/kWh Cost/kWh (Cbat/kWh) (Ccyc)

0.25C-0.25C 25 400 425 0.1062
1C-1C 100 600 700 0.1750
2C-2C 200 700 900 0.2250

Numerical Results
The numerical simulations use the battery parameters listed in Ta-
ble 2. Simulations are performed for the month of June 2019.

Performance Indices
• Arbitrage and self-sufficiency gains (Garb);
• Peak shaving gains (GPD);
• Total gains (GT): sum of Garb and GPD;
• Gains per cycle (Gcyc);
• Profit per cycle (Pcyc): difference between gains (Gcyc) and cost

per cycle (Ccyc);
• Expected payback period (ExPB): linear extrapolation of the

payback period compared to GT. ExPB = Cbat/GT;
• Self-sufficiency (SS);
• Wasted energy : Surplus production in kWh.

Table 2: Battery Parameters
bmin, bmax, b0 10%, 100%, 50% of brated

brated 1, 2, 5 kWh
ηch = ηdis 0.95

δmax = −δmin 0.25 brated W for 0.25C-0.25C,
brated W for 1C-1C, 2brated W for 2C-2C

Co-Optimization and Storage Profitability
The co-optimization results for a prosumer in categories A, C, and D
are presented in Tables 3, 4, and 5, respectively.

Table 3: (A) generation slightly higher than inelastic load
Case GPD GT Pcyc Cycles ExPB SS Waste

Euro Euro (years) (%) (kWh)
Load + PV - - - - - 26.82 57.4

1 kWh Battery
0.25C-0.25C 0 10.13 0.167 37.01 3.50 31.91 30.12

1C-1C 1.39 13.79 0.086 52.70 4.23 33.56 18.59
2C-2C 2.85 15.48 0.053 55.56 4.84 33.69 15.39

2 kWh Battery
0.25C-0.25C 1.39 15.83 0.079 42.53 4.47 34.96 12.97

1C-1C 2.85 19.26 0.035 45.75 6.06 35.85 5.15
2C-2C 2.85 19.33 -0.016 46.24 7.76 35.88 3.96

5 kWh Battery
0.25C-0.25C 1.39 22.46 0.028 33.27 7.88 36.38 0.39

1C-1C 2.85 24.67 -0.029 33.91 11.82 36.29 0.19
2C-2C 2.85 24.67 -0.079 33.91 15.20 36.29 0.18

Table 4: (C) Comparable generation and inelastic load
Case GPD GT Pcyc Cycles ExPB SS Waste

Euro Euro (years) (%) (kWh)
Load +PV - - - - - 28.02 58.14

1 kWh Battery
0.25C-0.25C 0 35.62 0.858 36.91 0.99 28.71 40.68

1C-1C 0 39.42 0.454 62.64 1.48 29.42 22.69
2C-2C 0 40.02 0.376 66.53 1.87 29.57 17.88

2 kWh Battery
0.25C-0.25C 0 40.04 0.294 50.01 1.77 29.21 27.27

1C-1C 0 44.36 0.184 61.75 2.63 29.79 10.73
2C-2C 4.31 48.70 0.177 60.51 3.08 29.79 9.09

5 kWh Battery
0.25C-0.25C 0 50.44 0.111 46.30 3.51 29.90 4.80

1C-1C 4.31 58.64 0.110 41.06 4.97 29.80 1.54
2C-2C 4.31 58.65 0.059 41.18 6.39 29.80 1.36

Table 5: (D) Generation significantly higher than inelastic load
Case GPD GT Pcyc Cycles ExPB SS Waste

Euro Euro (years) (%) (kWh)
Load + PV - - - - - 47.84 158.1

1 kWh Battery
0.25C-0.25C 0 8.57 0.192 28.69 4.13 56.91 126.13

1C-1C 0 9.49 0.110 33.22 6.15 57.72 115.66
2C-2C 0 9.56 0.073 35.55 7.85 57.84 106.63

2 kWh Battery
0.25C-0.25C 0 13.41 0.056 41.19 5.28 65.00 97.50

1C-1C 0 13.84 0.021 35.23 8.43 65.77 81.94
2C-2C 0 13.86 -0.011 32.47 10.82 65.80 70.04

5 kWh Battery
0.25C-0.25C 0 18.28 -0.007 36.85 9.69 74.90 53.58

1C-1C 0 18.71 -0.075 37.72 15.59 75.66 31.16
2C-2C 0 18.70 -0.125 37.66 20.05 75.65 27.41

Friction Coefficient
• Inclusion of friction coefficient is only relevant for 1 and 2 kWh

batteries for the prosumer in category C and 1 kWh battery for the
prosumer in category A.
• Table 6 compares the tuned friction coefficients for batteries

which performed more cycles than expected.

Table 6: Results with Friction Coefficient
Battery ηfric Profit Pcyc SS Waste Cycles ExPB
Model euros (%) (kWh) yrs.

For prosumer U2
1kWh,1C-1C 0.796 12.85 0.096 32.45 25.70 47.38 4.54
1kWh,2C-2C 0.797 14.45 0.079 32.53 24.99 47.44 5.19

For prosumer U8
1kWh,1C-1C 0.796 38.17 0.680 29.33 26.82 44.62 1.53
1kWh,2C-2C 0.796 38.50 0.582 29.37 25.16 47.65 1.95

2kWh,0.25C-0.25C 0.939 43.98 0.314 29.67 13.71 52.29 1.61
2kWh,1C-1C 0.939 43.47 0.328 29.73 14.34 43.17 2.68
2kWh,2C-2C 0.939 47.85 0.322 29.76 12.91 43.68 3.13

Conclusion

• The marginal value of installing battery decreases with storage
size and ramping capability;
• The value of storage for an average net-load comparable to stor-

age ramping rate (category C) leads to profits several folds higher
than for otherwise.
• Faster ramping batteries perform much more number of cycles

which deteriorates the profit made per 100% DoD cycles per unit of
storage capacity, thus making such batteries financially nonviable.
• Inclusion of ηfric for over-performing batteries increases Pcyc,

however, also increases the payback period.
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