Sizing and Profitability of Energy Storage for Prosumers in Madeira, Portugal

This work proposes a framework to select the best-suited battery for co-optimizing for peak demand shaving, energy arbitrage and increase self-sufficiency in the context of power network in Madeira, Portugal.

• Uses profit per cycle per unit of battery capacity and expected payback period as indices for selecting the best-suited storage parameters to ensure profitability.

• Introduces a friction coefficient to increase the value of storage by reducing the operational cycles and eliminate low returning transactions.

Context and Data Collection

We use xC-yC notation to represent the relationship between ramp rate and battery capacity. xC-yC implies battery takes 1/x hours to charge and 1/y hours to discharge completely.

Co-Optimization Formulation

The co-optimization formulation is developed in [1] and given as

P _{opt})	$ \underset{s_i}{\text{minimize}} \sum_{i=1}^{N} p_{\text{elec}}(i) \theta_i(s_i) h $		(3a
	subject to		
	Ramping constraint, Eq. 1	,	(3b
	Capacity constraint, Eq. 2,		(3c
	Self-sufficiency, $\theta_i(s_i) \ge 0$,		(3d

Co-Optimization and Storage Profitability

The co-optimization results for a prosumer in categories A, C, and D are presented in Tables 3, 4, and 5, respectively.

Table 3: (A) generation slightly higher than inelastic load

Casa	G _{PD}	GT	P _{cyc}	Cycles	ExPB	SS	Waste
Case	Euro	Euro			(years)	(%)	(kWh)
Load + PV	-	-	-	-	-	26.82	57.4
		1	kWh Ba	ttery			
0.25C-0.25C	0	10.13	0.167	37.01	3.50	31.91	30.12
1C-1C	1.39	13.79	0.086	52.70	4.23	33.56	18.59
2C-2C	2.85	15.48	0.053	55.56	4.84	33.69	15.39
2 kWh Battery							
0.25C-0.25C	1.39	15.83	0.079	42.53	4.47	34.96	12.97
1C-1C	2.85	19.26	0.035	45.75	6.06	35.85	5.15
2C-2C	2.85	19.33	-0.016	46.24	7.76	35.88	3.96
5 kWh Battery							
0.25C-0.25C	1.39	22.46	0.028	33.27	7.88	36.38	0.39
1C-1C	2.85	24.67	-0.029	33.91	11.82	36.29	0.19

The power network in Madeira Archipelago imposes [1]:

- Zero feed-in-tariff;
- Time-of-Use (ToU) electricity prices for consumption (Fig. 1);

• 8 levels of Peak Power Consumption (PPC): 3.45, 4.6, 5.75, 6.9, 10.35, 13.8, 17.25 and 20.7 kVA width daily cost of 0.1643, 0.2132, 0.2590, 0.3080, 0.4532, 0.5981, 0.7436 and 0.8892 respectively.

The development of better control strategies for battery energy storage systems (BESS) is one of the goals of H2020 SMILE (https: //www.h2020smile.eu), an EU co-funded research project. Under the scope of SMILE, PV production (PV) and power consumption (Load) measurements were taken from 14 prosumers in the island [2, 3]. The prosumers are categorized based on their inelastic load and PV generation:

- (A) PV generation slightly higher than the inelastic load;
- (B) Active management of load to match PV generation;
- (C) PV generation comparable to inelastic load;
- (D) PV generation significantly higher than the inelastic load.

Arbitrage, $\theta_i(s_i) \ge [z_i + s_i]$, (3e) Peak shaving, $[z_i + s_i]/h \leq P_{max}^{set}$ (3f)

where $\theta_i(s_i) = \max(0, z_i + s_i)$.

• The PPC threshold, P_{max}^{set} , is selected close to the power level $(P_{\max} + \delta_{\min})$, subject to $P_{\max}^{set} \ge (P_{\max} + \delta_{\min})$.

• P_{max}^{set} is selected by the electricity consumer as a PPC contract with the utility in Madeira.

• Note that the formulation **prioritizes self-consumption over** arbitrage.

Co-Optimization with Control of Cycles

Following prior work [4], we define a friction function for the active power to model the degradation due to cycles of operation as $P_{\text{fric}}^{i} = \frac{[P_{B}^{i}]^{+}}{\eta_{\text{fric}}} - [P_{B}^{i}]^{-}\eta_{\text{fric}}.$

• In the original formulation (P_{opt}) the constraint Eq. 3e is modified as $\theta_i \ge [z_i + P_{fric}^i]$.

• The friction coefficient takes a value from 1 to 0.

• η_{fric} needs to be tuned so as the operational life is increased by matching calendar and cycle degradation [4].

- If the battery is not over operating then η_{fric} is set to 1.
- For cases where the battery is over-performing, the low returning transactions is eliminated by decreasing value of η_{fric} .

Energy Storage Profitability

Cost of Storage (inverter + battery)

2.85 24.67 -0.079 33.91 15.20 36.29 0.18 2C-2C

Table 4: (C) Comparable generation and inelastic load

Casa	G _{PD}	GT	P _{cyc}	Cycles	ExPB	SS	Waste
Case	Euro	Euro			(years)	(%)	(kWh)
Load +PV	-	-	-	-	-	28.02	58.14
		1	kWh Ba	ittery			
0.25C-0.25C	0	35.62	0.858	36.91	0.99	28.71	40.68
1C-1C	0	39.42	0.454	62.64	1.48	29.42	22.69
2C-2C	0	40.02	0.376	66.53	1.87	29.57	17.88
	2 kWh Battery						
0.25C-0.25C	0	40.04	0.294	50.01	1.77	29.21	27.27
1C-1C	0	44.36	0.184	61.75	2.63	29.79	10.73
2C-2C	4.31	48.70	0.177	60.51	3.08	29.79	9.09
5 kWh Battery							
0.25C-0.25C	0	50.44	0.111	46.30	3.51	29.90	4.80
1C-1C	4.31	58.64	0.110	41.06	4.97	29.80	1.54
2C-2C	4.31	58.65	0.059	41.18	6.39	29.80	1.36

Casa	G _{PD}	GT	P _{cyc}	Cycles	ExPB	SS	Waste
Case	Euro	Euro			(years)	(%)	(kWh)
Load + PV	-	-			-	47.84	158.1
		1	kWh Ba	ittery			
0.25C-0.25C	0	8.57	0.192	28.69	4.13	56.91	126.13
1C-1C	0	9.49	0.110	33.22	6.15	57.72	115.66
2C-2C	0	9.56	0.073	35.55	7.85	57.84	106.63
	2 kWh Battery						
0.25C-0.25C	0	13.41	0.056	41.19	5.28	65.00	97.50
1C-1C	0	13.84	0.021	35.23	8.43	65.77	81.94
2C-2C	0	13.86	-0.011	32.47	10.82	65.80	70.04
5 kWh Battery							
0.25C-0.25C	0	18.28	-0.007	36.85	9.69	74.90	53.58
1C-1C	0	18.71	-0.075	37.72	15.59	75.66	31.16
2C-2C	0	18.70	-0.125	37.66	20.05	75.65	27.41

In this work, one prosumer was selected from each category (Fig. 2).

Figure 2: PV and inelastic load for 4 types of prosumers.

System Model and Storage Co-Optimization

System and Battery Model

At time instant i, the information available is the end user consumption d_i , the renewable generation r_i and the storage energy output s_i.

• *Cost of Inverter:* 100 euros/kWh (6kW SMA Sunny Boy 2.0 [5]); • *Li-lon battery:* two components: (a) capacity cost and (b) ramping capability cost, [6];

• The storage cost for per kWh in euros is given as:

Storage Cost = $300 + 0.25 \max(x, y) 100$ per kWh, (4) where x, y denotes the charging and discharging rates as described in the battery model xC-yC.

Profit Considering Degradation

- Battery cycle life equals 4000 cycles at 100% DoD;
- Calendar life equals 7 years.

Considering the Euros per cycle per rated battery capacity for different ramping batteries listed in Table 1, the battery should perform \approx 47.6 cycles per month in order to last 7 years and make more than the values listen in Table 1 to be profitable.

Table 1: Storage profitability with different ramping per kWh

Battery	Inverter	Battery	Battery Cost	$euros/cycle/b_{rated}$
Model	Cost/kWh	Cost/kWh	$(C_{\sf bat}/{\sf kWh})$	(C _{cyc})
0.25C-0.25C	25	400	425	0.1062
1C-1C	100	600	700	0.1750
2C-2C	200	700	900	0.2250

Numerical Results

The numerical simulations use the battery parameters listed in Table 2. Simulations are performed for the month of June 2019.

Performance Indices

Friction Coefficient

• Inclusion of friction coefficient is only relevant for 1 and 2 kWh batteries for the prosumer in category C and 1 kWh battery for the prosumer in category A.

• Table 6 compares the tuned friction coefficients for batteries which performed more cycles than expected.

Table 6: Results with Friction Coefficient

Battery	η_{fric}	Profit	P _{cyc}	SS	Waste	Cycles	ExPB
Model		euros		(%)	(kWh)		yrs.
		For pros	umer U	2			
1kWh,1C-1C	0.796	12.85	0.096	32.45	25.70	47.38	4.54
1kWh,2C-2C	0.797	14.45	0.079	32.53	24.99	47.44	5.19
		For pros	umer U	8			
1kWh,1C-1C	0.796	38.17	0.680	29.33	26.82	44.62	1.53
1kWh,2C-2C	0.796	38.50	0.582	29.37	25.16	47.65	1.95
2kWh,0.25C-0.25C	0.939	43.98	0.314	29.67	13.71	52.29	1.61
2kWh,1C-1C	0.939	43.47	0.328	29.73	14.34	43.17	2.68
2kWh,2C-2C	0.939	47.85	0.322	29.76	12.91	43.68	3.13

Conclusion

• The marginal value of installing battery decreases with storage size and ramping capability;

• The value of storage for an average net-load comparable to storage ramping rate (category C) leads to profits several folds higher than for otherwise.

• Faster ramping batteries perform much more number of cycles which deteriorates the profit made per 100% DoD cycles per unit of storage capacity, thus making such batteries financially nonviable.

• Load without storage: $z_i = d_i - r_i$

• Load seen by grid: $L_i = d_i - r_i + s_i$

• Efficiency of charging and discharging: $\eta_{ch}, \eta_{dis} \in (0, 1]$ • Change in battery energy level: $x_i = h\delta_i$, where δ_i denotes storage ramp rate at time instant i such that $\delta_i \in [\delta_{\min}, \delta_{\max}], \forall i$. • The energy output of storage in the i^{th} instant: $s_i =$ $\frac{|\mathbf{x}_i|^+}{n_{ch}} - \eta_{dis}[\mathbf{x}_i]^-$, where $[\mathbf{x}]^+ = \max(\mathbf{0}, \mathbf{x})$ and $[\mathbf{x}]^- = -\min(\mathbf{0}, \mathbf{x})$

The *ramping constraint* induce limits on s_i given by

 $s_i \in [\delta_{\min}h\eta_{dis}, \delta_{\max}h/\eta_{ch}], \quad \forall i.$ (1)

The energy stored in the battery is denoted as b_i , defined as $b_i = b_{i-1} + x_i$. The battery capacity constraint is given as

 $b_i \in [b_{\min}, b_{\max}], \quad \forall i.$ (2)where b_{\min} and b_{\max} are minimum and maximum permissible battery charge levels respectively.

- Arbitrage and self-sufficiency gains (G_{arb});
- Peak shaving gains (G_{PD});
- Total gains (G_T) : sum of G_{arb} and G_{PD} ;
- Gains per cycle (G_{cuc});
- Profit per cycle (P_{cuc}): difference between gains (G_{cuc}) and cost per cycle (C_{cuc}) ;
- *Expected payback period* (ExPB): linear extrapolation of the payback period compared to G_T . ExPB = C_{bat}/G_T ;
 - *Self-sufficiency* (SS);
 - *Wasted energy*: Surplus production in kWh.

Table 2: Battery Parameters

b_{\min} , b_{\max} , b_0	10%, 100%, 50% of $b_{\sf rated}$						
\mathfrak{b}_{rated}	1, 2, 5 kWh						
$\eta_{ch}=\eta_{dis}$	0.95						
$\delta_{\rm max} = - \delta_{\rm min}$	$0.25 \ b_{rated} \ W$ for $0.25C-0.25C$,						
	b_{rated} W for 1C-1C, $2b_{rated}$ W for 2C-2C						

• Inclusion of η_{fric} for over-performing batteries increases P_{cuc} , however, also increases the payback period.

*

References

- [1] M. U. Hashmi, L. Pereira, and A. Bušić. Energy storage in Madeira, Portugal: co-optimizing for arbitrage, self-sufficiency, peak shaving and energy backup. In 2019 IEEE Milan PowerTech, pages 1-6, June 2019.
- [2] Prsma, M-ITI, EEM, and ACIF-CCIM. Data Collection, Modelling, Simulation and Decision. Technical report 4.3, European Commission, Funchal, Portugal, June 2018.
- [3] Prsma, EEM, M-ITI, ACIF-CCIM, LIBAL, and DTU. Detailed Plan of Action for the DSM Demonstrator. Technical report 4.6, European Commission, Funchal, Portugal, July 2018.
- [4] Md Umar Hashmi, Wael Labidi, Ana Bušić, Salah-Eddine Elayoubi, and Tijani Chahed. Long-term revenue estimation for battery performing arbitrage and ancillary services. In SmartGridComm. IEEE, 2018.

[5] Sma sunny boy 2.0 cost, 2019.

[6] Chris Zuelch Todd Aquino and Cristina Koss. Energy storage technology assessment (prepared for public service company of new mexico); hdr report no. 10060535-0zp-c1001, 2017.

Acknowledgement

Funding from grants: ANR under ANR-16-CE05-0008, EU H2020 under GA 731249, and FCT under grants LARSyS - FCT Plurianual funding 2020-2023 and CEECIND/01179/2017 are gratefully acknowledged.

ISGT North America, 17 - 20 February 2020, Washington, DC, USA || Contacts: lucas.pereira@tecnico.ulisboa.pt - https://www.alspereira.info