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A B S T R A C T

The field of Non-Intrusive Load Monitoring (NILM) gained prominence due to its promise of inferring the energy
consumption of individual appliances by analyzing only the aggregated consumption. Still, despite some re-
search efforts towards producing meaningful comparisons between approaches, it is not yet possible to find a
proven and formally accepted set of metrics to do this. Against this background, this paper focuses on under-
standing the challenges of defining a consistent set of performance metrics for this problem. More concretely, it
reports on an empirical exploration of 23 performance metrics’ behavior when applied to event-detection al-
gorithms, identifying relationships and clusters between them. The results indicate that when applied to this
problem, the performance metrics will show some considerable differences in behavior compared to other, more
traditional, machine-learning domains. The results also suggest that most of the differences occur due to the
unbalanced nature of the event detection problem, in which the number of positive cases (True Positives and
True Negatives) is much higher than the number of false situations (False Positives and False Negatives).
Furthermore, the results suggest that additional research is needed to find proper domain-specific performance
metrics that take full consideration of the properties of the aggregated load.

1. Introduction

The worldwide energy consumption has been steadily increasing in
the past decades, emerging as one of the main contributors to climate
change, and therefore one of the main targets of the climate action
defined by the United Nations mainly through Sustainable
Development Goals (SDGs) 7, 11, and 13.1

Having the ability to keep track of individual appliance consump-
tion in households as been deemed one of the critical drivers for re-
ducing the environmental impacts of electricity over consumption at
both micro and macro scales. For example, by promoting energy-saving
behaviors in individual consumers through eco-feedback, and by en-
abling the delivery of wide-scale personalized energy efficiency pro-
grams such as demand-response (Armel, Gupta, Shrimali, & Albert,
2013; Rolnick et al., 2019). Yet, electricity presents a particular pro-
blem to consumers and researchers alike, as unlike other utilities such
as water and gas, it is an invisible resource with no visible form, flow, or
weight. Thus, making it hard for people to gauge the quantity of elec-
tricity consumed by individual appliances (Attari, DeKay, Davidson, &
de Bruin, 2010; Chisik, 2011; Pereira & Chisik, 2017).

In this context, the field of Non-Intrusive Load Monitoring (NILM),
gained prominence due to the promise of inferring the energy con-
sumption of individual appliances by applying advanced machine-
learning and signal-processing techniques to the aggregated measure-
ments taken at a limited number of locations in the building (Hart,
1992). This discipline greatly contrasts the more intrusive and costly
monitoring technology that involves deploying multiple sensors
(Berges, Goldman, Matthews, Soibelman, & Anderson, 2011).

From the early expectations that individual appliance consumption
data would promote energy-saving behaviors in individuals (Armel
et al., 2013; Kelly & Knottenbelt, 2016), the expectations of NILM
technology quickly evolved to the supply side, serving as the backbone
technology that will enable the creation of innovative smart-grid ser-
vices that go beyond helping individuals reduce energy consumption
(Najafi, Moaveninejad, & Rinaldi, 2018; Townson, 2016). The potential
benefits of NILM include:

• Provides an inexpensive way for utilities to segment their customers
(e.g., Beckel, Sadamori, Santini, & Staake, 2015; Kavousian,
Rajagopal, & Fischer, 2013). It also allows the deployment and
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follow-up of long-term energy efficiency programs, which are ne-
cessary to access the long-term effectiveness of such programs (e.g.,
Ma, Lin, & Li, 2018; Pereira & Nunes, 2019; Pereira, Quintal,
Barreto, & Nunes, 2013; Quintal, Pereira, Nunes, Nisi, & Barreto,
2013).

• Enables the creation of innovative energy efficiency services. For
example, the possibility of inferring and providing eco-feedback on
the everyday activities (e.g., Alcal’a, Parson, & Rogers, 2015; Belley,
Gaboury, Bouchard, & Bouzouane, 2013; Stankovic, Stankovic, Liao,
& Wilson, 2016), and the detection of anomalies in electric loads
(e.g., Munir, Stankovic, & FailureSense:, 2014; Orji et al., 2010;
Rodney & Poll, 2014).

• NILM data can also play an important role in improving existing
demand forecasting and demand-side flexibility estimation algo-
rithms. These algorithms are key in optimizing the generation and
distribution of electric energy, and the integration of renewable
energy sources (RES) in the grid (e.g., Gajowniczek & Zkabkowski,
2017; Kong et al., 2015; Lucas, Jansen, Andreadou, Kotsakis, &
Masera, 2019; Pipattanasomporn, Kuzlu, Rahman, & Teklu, 2014;
Zhai, Zhou, Wang, & He, 2020).

Since its inception, NILM research has been geared towards the
development of disaggregation algorithms, as suggested by the nu-
merous reviews in the field (e.g., Esa, Abdullah, & Hassan, 2016; Najafi
et al., 2018; Nalmpantis & Vrakas, 2018; Zeifman & Roth, 2011; Zoha,
Gluhak, Imran, & Rajasegarar, 2012).

In general, disaggregation fall in one of two categories: (1) event-
based approaches, and (2) event-less approaches (Bergés & Kolter,
2012; Pereira & Nunes, 2018). Event-based approaches seek to dis-
aggregate the total consumption by means of detecting and classifying
individual appliance transitions in the aggregated signal (e.g., Alcalá,
Ureña, Hernández, & Gualda, 2017; Barsim & Yang, 2015; Berges et al.,
2011; Hart, 1985). The classified transitions are then used to estimate
each appliance's energy consumption employing transition matching
and optimization algorithms (e.g., Giri & Bergés, 2015; He, Jakovetic,
Stankovic, & Stankovic, 2018; Zhao, Stankovic, & Stankovic, 2016). On
the other hand, event-less approaches attempt to match each sample of
the aggregated power to the consumption of one or a combination of
different appliances. This is done through methods such as Bayesian
statistics, Hidden Markov Models (HMM), and deep-learning methods
such as Deep Artificial Neural Networks (Deep-Nets) (e.g., Gomes &
Pereira, 2020; Harell, Makonin, Bajic, & Wavenilm, 2019; Makonin,
Popowich, Bajic, Gill, & Bartram, 2016; Murray, Stankovic, Stankovic,
Lulic, & Sladojevic, 2019; Yan et al., 2019).

Recently, a smaller number of researchers started to address the
challenges related to the lack of adequate methods to conduct mean-
ingful performance evaluation of the developed approaches. Identified
as one of the main barriers to the real-world adoption of NILM enabled
smart-meters, most of the existing efforts in performance evaluation
focused on five main aspects (Pereira & Nunes, 2018): (1) public da-
tasets (e.g., Anderson, Ocneanu, et al., 2012; Kelly & Knottenbelt, 2015;
Klemenjak et al., 2019; Makonin, Ellert, Bajic, & Popowich, 2016), (2)
toolkit development (e.g., Batra et al., 2014, 2019; Pereira, 2017b), (3)
study of performance metrics (e.g., Anderson, Bergés, Ocneanu,
Benitez, & Moura, 2012; Makonin & Popowich, 2017; Pereira & Nunes,
2017), (4) evaluation frameworks (e.g., Czarnek, Morton, Collins,
Newell, & Bradbury, 2015; Pereira & Nunes, 2015b; Symeonidis,
Nalmpantis, Vrakas, & Benchmark, 2019), and (5) comparability and
complexity (e.g., Egarter, Pöchacker, & Elmenreich, 2015; Klemenjak,
Makonin, & Elmenreich, 2020; Nalmpantis & Vrakas, 2018).

1.1. Problem statement and proposed approach

The work presented in this paper focuses on performance evalua-
tion, more concretely in the challenge of defining a consistent and
widely accepted set of performance metrics to quantify, report, and

benchmark NILM algorithms.
Throughout the years, disaggregation accuracy has been widely used

by NILM researchers when referring to the performance of their algo-
rithms. However, disaggregation accuracy has a very loose definition in
the sense that many different metrics fit under this umbrella term. For
example, in his seminal work Hart (Hart, 1985) used the total energy
explained (i.e., ratio between total estimated energy and actual energy
used), whereas in Liang, Ng, Kendall, and Cheng (2010) the authors
defined disaggregation accuracy in terms of, detection accuracy (the
ratio between the correctly detected events and all the detected events),
disaggregation accuracy (the number of correctly classified events ex-
cluding the detection errors) and overall accuracy (the number of correct
classifications including detection errors).

As of today, there is an agreement on grouping performance metrics
according to two main categories. On the one hand, the event detection
performance metrics (ED) designed to evaluate the NILM's ability to track
consumption over time, i.e., event detection and classification algo-
rithms. On the other hand, the energy estimation performance metrics
(EE), which refer to the metrics designed to characterize and evaluate
the NILM disaggregated data against the actual ground-truth (Mayhorn,
Sullivan, Petersen, Butner, & Johnson, 2016). Pereira and Nunes (2018)
provides a comprehensive review of 39 NILM performance metrics ac-
cording to this categorization (24 for event detection, and 15 for energy
estimation).

Despite these early efforts to better understand performance metrics
in the scope of NILM (e.g., Makonin & Popowich, 2017; Mayhorn,
Sullivan, Fu, & Petersen, 2017; Pereira & Nunes, 2017) there is not
enough knowledge about this topic to enable the definition of a widely
accepted set of performance metrics and their respective thresholds. For
example, in Zeifman (2012), it is suggested that to be approved by
homeowners, the minimum accepted disaggregation accuracy should be
80–90%. However, there is no information about which metrics were
considered in this study. Furthermore, since many of the metrics ap-
plied in NILM are inherited from other application domains in machine-
learning (e.g., the precision and recall have their origins in the in-
formation retrieval domain (Kagolovsky & Moehr, 2003)), it is chal-
lenging to establish meaningful thresholds without first gaining a
deeper understanding about the behavior of such metrics when applied
to the NILM problem (Nalmpantis & Vrakas, 2018; Pereira & Nunes,
2018).

Therefore, it is crucial to understand the relationships between ex-
isting performance metrics in the scope of NILM algorithms. Having
access to this information would help the researchers select the metrics
that are more suitable to their needs.

To this end, this paper presents an experimental comparison of
performance metrics for event detection algorithms. More precisely, it
analyzes the behavior of 23 performance metrics, across five algorithms
and four event detection scenarios from two public NILM datasets. The
following steps are proposed:

1. Creation of Baseline Data: In this step, baseline performance
evaluation data for event detection algorithms are created. First,
different event detection models are created by employing a con-
trolled parameter sweep across five (5) event detection algorithms.
Second, each model is executed against four (4) event detection
scenarios from two publicly available datasets. Finally, the 23 per-
formance metrics are calculated for each of the event detection
models executed in the previous step.

2. Calculation of Metric Pairwise Correlations and Average
Correlation Matrices: In this step, the existence of linear Pearson
and non-linear Spearman pairwise correlations between the perfor-
mance metrics are investigated. The former indicates the presence
and direction of any linear relationships. The latter reports on the
existence of monotonic relationships (i.e., the results tend to change
together but not necessarily at a linear rate). Since a correlation
matrix is generated for each model-dataset pair, a single cross-
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dataset matrix was created by averaging the individual pairwise
correlation matrices. Ultimately, the average pairwise correlations
between metrics will unveil if there are performance metrics that
will yield the same ranks (i.e., if they select the same models).
Likewise, this will also reveal the cases in which the performance
metrics rank the different models in totally different directions.
Finally, metrics with low or non-existing correlation will rank the
detection models in very different ways.

3. Cluster Analysis: Finally, after an initial analysis, in this step any
existing correlations are further studied using hierarchical clustering
and dendrograms. Ultimately, the different metric clusters will pro-
vide a better understanding concerning which metrics tend to select
similar models. Furthermore, the various cluster arrangements will
also provide valuable insights concerning the theoretical guarantees
of such metrics, and if they hold for the event detection problem.

1.2. Related works

The selection of appropriate performance metrics is a transversal
problem in machine-learning and has received the attention of many
researchers through analytic and empirical approaches.

Analytic approaches focus on exploring the theoretical properties of
individual metrics, and the definition of similarity and dissimilarity
scores between pairs of metrics. For example, in Flach (2003), Flach
studied how the output of seven binary performance metrics is affected
by changes in the relative proportions of classes in evaluated problem
(i.e., dataset). According to this work, metrics should distinguished by
their effective skew landscapes (i.e., variation under dataset unbalance)
rather than by their actual values. Furthermore, if two metrics are to be
considered equivalent, they must also be skew-equivalent, i.e., they
should have the same skew ratio across all the possible variations in the
class distribution. Another analytical exploration of performance me-
trics was bone in Sokolova and Lapalme (2009). In this work, the au-
thors analyzed the behavior of 24 metrics in binary, multi-class, multi-
label, and hierarchical classification problems to understand their
ability preserve they values under class-specific changes in the confu-
sion matrix. A metric is said to be invariant to a specific confusion-
matrix modification if its value does not change. Two metrics are
considered similar if they have the same invariants.

Concerning empirical approaches, the general idea is to run several
learning algorithms across a selection of datasets and calculate their
performance using different performance metrics. These metrics are
later compared to understand their behavior across the different algo-
rithms and datasets. For instance, in Caruana and Niculescu-Mizil
(2004), Ferri, Hernández-Orallo, and Modroiu (2009) the authors stu-
died the performance of different classification algorithms across mul-
tiple problems (one or more datasets represent each problem) using a
variety of metrics with the goal of understanding which were better
suited in each situation. To state more concretely, Caruana and
Niculescu-Mizil (2004) experimented with nine performance metrics
and seven binary classification problems, using multi-dimensional
scaling (MDS) and correlation for the comparison. As for Ferri et al.
(2009), the authors tested with 18 metrics and 30 datasets (15 binary
and 15 multi-class), using correlation and dendrograms for the com-
parison.

While all these works have addressed metrics similarity from many
different perspectives, a key take-away message is that despite having
some similarities (reflected by pairwise correlations greater than 0.5),
most metrics are fundamentally different as they are designed to ad-
dress different aspects of the problem. Interestingly, it was also found
that except for the AUC rank-based metrics, correlations among the
same family of metrics are not as high as expected (Ferri et al., 2009).

A significant result for NILM research is that the differences between
the performance metrics tend to increase with the imbalance in the
data. This difference is reflected in the lower pairwise correlations
observed in imbalanced problems (Ferri et al., 2009). However, it is

also shown that Precision is less sensitive to dataset imbalance, mostly
due to its invariance to an increase in the positive cases (TP and FN)
(Sokolova & Lapalme, 2009). In contrast, the value of Recall will in-
crease with the number of TPs regardless of an increase in the amount
of FPs. Thus, in imbalanced problems like NILN, the F-measure is ex-
pected to be biased towards positives (Flach, 2003).

Ultimately, it becomes evident that different performance metrics
yield different trade-offs that are more or less appropriate based on the
studied problem. Therefore, the correct choice of which metrics to
optimize or assess a model's performance does matter and should be
studied in the context of each machine learning problem. Yet, as seen in
the introduction, to date the research in performance metrics for NILM
is scarce and only a few works can be found in the published literature
(Anderson, Bergés, et al., 2012; Makonin & Popowich, 2017; Mayhorn
et al., 2016; Pereira & Nunes, 2017).

In Anderson, Bergés, et al. (2012) the authors propose four perfor-
mance metrics for event detection algorithm, two of which are domain-
specific. An empirical exploration using the BLUED dataset (Anderson,
Ocneanu, et al., 2012) was also conducted. As expected, it was found
that the optimal event detector, according to one metric, did not ne-
cessarily perform well according to other metrics. Nevertheless, the key
takeaway message of this work is the importance of including the ef-
fects of power in the event detection metrics since electric appliances
(and consequently power events) are not equally important in terms of
energy consumption.

In Makonin and Popowich (2017) an empirical analysis of six me-
trics (three for classification and three for energy estimation) was
performed using 10-fold cross-validation in one year of data from the
AMPds dataset (Makonin, Ellert, et al., 2016). In this work, the authors
show that combining classification and energy estimation in the same
metric hides essential details about the algorithms’ underlying perfor-
mance. Instead, it is suggested that both treads are considered but using
separate metrics. In either case, using one or the other will not provide
enough details about the performance.

In Mayhorn et al. (2016), the authors followed an analytical ap-
proach to study 10 energy estimation metrics. More concretely, each
metric's individual behavior was evaluated in three different tests
against 12 NILM error scenarios (i.e., in each scenario, the algorithm
was known to produce a specific error). The study finds that the metrics
energy error, energy accuracy, and match rate are best suited. The key
message of the paper is that regardless of the selected metrics, the
difference in energy demand across the data sets requires that these
metrics be carefully examined. Otherwise, wrong conclusions are likely
to be drawn regarding the performance of the underlying NILM algo-
rithms.

Finally, in Pereira and Nunes (2017) the authors analyzed the be-
havior of 18 performance metrics empirically when applied to classi-
fication algorithms in event-based NILM. More concretely, six classifi-
cation algorithms were tested across 11 datasets, and the performance
metrics compared using correlation analysis and hierarchical clustering.
The obtained results show that when applied to event classification, the
metrics based on the confusion matrix exhibit correlation among
themselves (< 0.5), in line with what happens in other machine-
learning domains like medical diagnosis and face recognition as seen
above. The authors also find that probabilistic measures can provide
information that is not available when using more traditional metrics
since they report performance, taking into consideration not just the
number of errors but also the distance to the correct values.

As for this paper, it addresses the event detection step which was
only looked at by Anderson, Bergés et al. (2012). The focus of this work
is to gain an in-depth understanding of how performance metrics be-
have when used to evaluate this problem and how this compares to the
results already present in the related literature. By filling this crucial
gap in the current body of knowledge, we expect to contribute to the
ongoing efforts towards defining the sets of metrics that are more
adequate to assess the performance of the many algorithms that
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constitute a NILM solution.

1.3. Document organization

The remaining of this paper is organized as follows: Section 2 pre-
sents and describes the algorithms, datasets, and performance metrics
that form the basis of this work. Section 3 thoroughly describes the
experimental design. Section 4 presents the results and the respective
discussion. Section 5 provides an overview of the research implications
of this work and outlines future work directions. Finally, the paper
concludes in Section 6.

2. Algorithms, datasets and performance metrics

This section presents and describes the different event detection
algorithms, datasets, and performance metrics used in this work.

2.1. Algorithms

On an event-based NILM pipeline, event detection is the process of
detecting the changes in the power load that are assumed to happen in
response to appliances changing their mode of operation. This sub-
section provides a brief explanation of the event detection algorithms
that were used in this work (listed in Table 1). For additional details,
please refer to Pereira (2016), and the original references provided for
each algorithm.

2.1.1. Expert heuristic detector
The expert heuristic event detector is a modified version of the al-

gorithm presented in Meehan, McArdle, and Daniels (2014). The ori-
ginal algorithm is based on a sliding window that identifies changes in
the root mean square (RMS) of the power signal. Power events are
triggered when the following conditions are met: (i) the absolute am-
plitude of the RMS in the second under test is higher by a threshold
value than the current RMS 4 s before, and (ii) the previous event did
not happen in the last 3 s.

The original version of this algorithm was developed to perform
event detection at low sample rates (≤1 Hz), and its parameter space Ψ
is comprised of three parameters: a power threshold Pthr, the number of
seconds before the second under evaluation Gpre (set initially to 4 s),
and the minimum elapsed time between events Telap (set initially to 3 s).

With the objective of supporting datasets with higher sampling rates
(> 1 Hz), the original algorithm was extended with three additional
parameters. More precisely, pre- and post-event window lengths, (ωpre

and ωpost), and an event edge Eedge. The pre- and post-event window
lengths are used to set the number of samples to average in order to find
the difference in amplitude between different instants in time (Δpwr).
The event edge parameter is used to enable the evaluation of the ob-
tained results against the ground-truth data. In other words, the event
edge is the sample index inside the second where the event occurred,
e.g., an event edge of zero means that the event happened in the first
sample of that second (assuming zero-indexing).

The algorithm works as follows: In the first step, for each power
sample, the amount of power change Δpwr is calculated by subtracting
the average power before, from the average power after that sample. In
the second step, power changes with a Δpwr above the predefined

threshold Pthr (in absolute value) are flagged as possible power events.
Finally, in the third step, the flagged power events that are separated by
at least Telap seconds are confirmed as events, whereas the others are
discarded.

2.1.2. Probabilistic detectors
The probabilistic detectors used in this work are extensions of the

Generalized Likelihood Ratio event detector (GLR) presented in Luo,
Norford, Leeb, and Shaw (2002), in the sense that they rely on the log-
likelihood ratio test to calculate the likelihood of a potential change in
the mean value of two sequential windows (pre- and post-event win-
dows, respectively).

However, unlike the GLR algorithm that sets a threshold to the
detection statistic (DS) in order to find power events, (i.e., a power
event is signaled whenever a pre-defined threshold in the DS is
reached), the LLD (Anderson, Bergés, et al., 2012; Berges et al., 2011)
and SLLD (Pereira, 2017a; Pereira, Quintal, Gonc calves, & Nunes,
2014) event detectors rely on specific algorithms to extract the power
events from the detection statistics signal. To state more concretely,
each of the probabilistic event detectors used in this work consist of two
separate algorithms. The first referred to as Detection Statistic, is used to
calculate the power event likelihood. The second referred to as Detection
Activation, is used to extract the power events from the signal generated
by the former.

2.1.2.1. Detection statistics. In the case of the LLD, the detection statistic
is given by Eq. (1), where μ0,n, n0,

2 , μ1,n and n1,
2 are the sample mean

and variance of the pre- and post-event windows, respectively. P(x) is
the power at the xth sample.
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× ×
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With respect to the SLLD, the detection statistic is given by Eq. (2),
where μ0,n and μ1,n are the mean of the pre- and post-event windows
respectively, n

2 is the variance of the detection window, and P(x) is the
power of the xth sample.
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2.1.2.2. Detection activation. Two detection algorithms were developed.
The first one is a voting algorithm that works by sliding a voting
window (wV ) across the log-likelihood l[n] and assigning a vote to the
sample with the higher absolute magnitude at each shift of the window.
Then, for each sample in the log-likelihood, the votes are accumulated,
and the samples with a number of votes greater than a voting threshold
(Vthr) are signaled as being power events. This algorithm was first
presented in Berges (2010)

The second algorithm works by sliding a window (wM) across the
absolute value of the log-likelihood l[n] looking for the local maxima.
The length of the window is equal to twice the maxima precision plus
one (2Mpre + 1). For each shift of the sliding window, the sample in the
middle is signaled as a power event if its absolute value is larger than
the absolute value of all the MPre samples to the left and right.

2.2. Datasets

At the time of this research, BLUED (Anderson, Ocneanu, et al.,
2012) was the only dataset that contained labeled power events by
default. The BLUED dataset, released in 2012, consists of one week of
whole-house current and voltage measurements (at 12 kHz) and real
and reactive power (at 60 Hz) from one house in the state of Pennsyl-
vania, USA. For each power event with an absolute power change of
30 W, the timestamp and responsible appliance name are also provided.
A total of 43 loads were considered, 34 of which have labeled power

Table 1
Event detection algorithms under evaluation.

Algorithm Symbol

Expert Heuristic Detector EHD
Log Likelihood Ratio Detector with Voting LLDVote

Simplified Log Likelihood Ratio Detector with Maxima SLLDMax

Log Likelihood Ratio Detector with Maxima LLDMax

Simplified Log Likelihood Ratio Detector with Voting SLLDVote
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events.
Consequently, to proceed with this work, it was necessary to iden-

tify the power events of additional datasets. More concretely, we
identified the transitions of one week of data from House 1 (23/06/
2013 to 29/06/2013) and House 2 (27/05/2013 to 02/06/2013) of the
UK-DALE dataset (Kelly & Knottenbelt, 2015). The UK-DALE dataset,
released in 2014, is a record of electric energy consumption from five
homes in the United Kingdom. Overall, the dataset contains aggregated
and appliance-level active power, measured every 6 s. In three houses,
aggregated current and voltage are available at 16 kHz, as well as real
power, reactive power, and voltage at 1 Hz. Disaggregated consumption
is made available for 54 and 20 appliances in House 1 and House 2,
respectively.

The power changes were identified and labeled following the semi-
automatic labeling approach presented in Pereira and Nunes (2015a).
Furthermore, since only power events with a minimum absolute power
change of 30 W were considered in BLUED, the same was done for UK-
DALE. Note that it is essential to keep this consistent across datasets.
Otherwise, BLUED would have an advantage since none of the missed
transitions below ± 30 W would be considered False Negatives.

Ultimately, this resulted in four scenarios from two datasets. In each
scenario, the sampling rate is that of the line frequency, i.e., 60 Hz in
BLUED and 50 Hz in UK-DALE. The datasets were then converted to the
Energy Monitoring and Disaggregation Data Format (EMD-DF) (Pereira,
2017b; Pereira, Nunes, & Bergés, 2014), thus avoiding the need to write
different code to interface with each dataset.

Table 2 summarizes the datasets used in this experiment. P.E. is the
number of power events in the dataset, Power Change (W) is a summary
of the distribution of the power events in terms of mean, and the 25%,
50%, and 75% percentiles, and Elapsed Time (S) is a summary of the
difference in time between the power events in the same terms as the
Power Change column. Fig. 1 shows a graphical representation of the
information in Table 2. It can be observed that the minimum absolute
power change is the same in each dataset (30 W). As for the number of
seconds between power events, it is possible to see that in BLUED A, the
power events are much more spread than in the other cases.

2.3. Performance metrics

A characteristic of residential power data is that appliance activity is
sparsely distributed. As a consequence, for an event detector with
reasonable performance, it is expected that the number of true nega-
tives (TN) will be much higher than the number of true positives (TP),
false positives (FP) and false negatives (FN) (Anderson, Bergés, et al.,
2012). This effect is not exclusive to the NILM problem. It is, for ex-
ample, common in information retrieval problems where the number of
irrelevant documents than can be returned after a specific query is
much higher than the number of actual relevant items. As such, it is not
unexpected that NILM researchers have adapted performance metrics
used in the information retrieval domain to evaluate event detection
algorithms, like for example, precision and recall (Kagolovsky & Moehr,
2003).

This work considers these and other confusion matrix and rank-
based metrics that are commonly used to evaluate this class of pro-
blems. Furthermore, this work also explores performance metrics spe-
cifically created for event detection problems (Anderson, Bergés, et al.,
2012), i.e., Domain-Specific Metrics. The different performance metrics
are briefly described next. Please refer to Appendix A for the respective
equations.

2.3.1. Confusion matrix based metrics
As the name suggests, confusion matrix based metrics are derived

from the values in the confusion matrix. Table 3 lists the confusion
matrix based performance metrics that were used, where Best and
Worst refer to the best and worst values that each metric can report.

Table 2
Summary of the active power change and elapsed time between power events in
the event detection datasets.

Dataset P.E. Power change (W) Elapsed time (S)

Mean 25% 50% 75% Mean 25% 50% 75%

UK-DALE H1 5440 268 48 100 273 111 4 7 28
UK-DALE H2 2842 365 45 74 137 212 6 15 172
BLUED PA 887 274 84 116 582 690 18 294 892
BLUED PB 1562 351 40 170 428 383 7 35 83

Fig. 1. Summary of dataset characteristics: absolute step change (left); seconds between power events (right).

Table 3
Summary of confusion matrix based metrics.

Metric Symbol Best Worst

Accuracy A 1 0
Error-rate E 0 1
Precision P 1 0
Recall R 1 0
False Positive Rate FPR 0 1
False Positive Percentage FPP 0 a

F0.5-Measure F0.5 1 0
F1-Measure F1 1 0
F2-Measure F2 1 0
Standardized MCC SMCC 1 0
Distance to Perfect Score P-R DPSPR 0 2
Distance to Perfect Score TPR-FPR DPSRate 0 a

Distance to Perfect Score TPP-FPP DPSPerc 0 a

a Since the FPP metric can return a value greater than one it is not possible to
define a lower bound.
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2.3.2. Rank based metrics
Rank (or ordering) metrics can be thought of as summaries of the

performance of a learned model over varying decision criteria. One of
such measures is the area under the ROC curve (AUC), which is drawn
by changing the discrimination threshold of a classifier and calculated
using the trapezoidal rule.

However, for discrete algorithms where fixed labels are produced
(the case of event detection), the AUC should not be measured by
employing the trapezoidal rule since the eventual presence of outliers
could lead to distorted results (Iba, Hasegawa, & Paul, 2009). Instead,
the non-parametric Wilcoxon statistic should is used, as suggested by
Hanley and McNeil (1982).

Table 4 summarizes the rank metrics used in this work. A more
detailed explanation of each metric is provided in Iba et al. (2009).

2.3.3. Domain-specific metrics
Domain-specific metrics for event detection were introduced in

Anderson, Bergés et al. (2012) motivated by the fact that performance
metrics based solely on the confusion matrix implicitly assume that all
power events are of equal importance. An assumption that, as argued by
the authors, is not fair since different appliances have different con-
sumption levels and consequently, more or less weight in the final en-
ergy estimation. Table 5 summarizes the domain specific metrics under
study in this work.

3. Experimental design

This section thoroughly describes the experimental design. It starts
with a description of the training and testing procedures, which is
followed by an explanation of how the different performance metrics
were calculated. Next, the processes for creating the pairwise correla-
tion matrices and the performance metrics clusters are described.

3.1. Training and testing

To get event detection results, a controlled parameter sweep was
conducted for each of the five event detection algorithms. A parameter
sweep refers to a controlled variation of some parameters in a particular
algorithm (i.e., structural changes) and provides insights into how the
different parameters affect the final results.

Ultimately, the parameter sweep returned 47,950 distinct event
detection models across the five algorithms. Each model was tested

against the four event detection scenarios for a total of 109,800 model-
dataset pairs, as summarized in Table 6. It was decided to fix the power
threshold (Pthr) to 30 W, since this was the minimum power change for
which there were labeled events. The remaining parameters of each
algorithm were changed as described next.

3.1.1. MEH
For the MEH, it was decided to change all the remaining parameters

using the range of values presented in Table 7.

3.1.2. LLD and SLLD with voting activation
The LLD and SLLD with voting activation were tested according to

the parameter ranges defined in Table 8. It is important to note that the
number of models that result from this parameter sweep varies with the
sampling rate of the dataset. For example, in a 60 Hz dataset for each
half-a-second increment it is always possible to increment twice the
voting threshold by fifteen samples, which is not always true in the case
of 50 Hz datasets.

3.1.3. LLD and SLLD with maxima activation
The LLD and SLLD with maxima activation were tested according to

the parameter ranges defined in Table 9.

Table 4
Summary of rank based metrics.

Metric Symbol Best Worst

Wilcoxon statistics based AUC WAUC 1 0
Wilcoxon statistics based AUC Balanced WAUCB 1 0
Geometric Mean AUC GAUC 1 0
Biased AUC BAUC 1 0

Table 5
Summary of domain specific metrics.

Metric Symbol Best Worst

Total Power Change – False Positives TPCFP 0 a

Total Power Change – False Negatives TPCFN 0 a

Average Power Change – False Positives APCFP 0 a

Average Power Change – False Negatives APCFN 0 a

Distance to Perfect Score TPC DPSTPC 0 b

Distance to Perfect Score APC DPSAPC 0 b

a The worst result is proportional to the number of events and size of the
erroneous events; thus it is not possible to define a lower bound.

b Since it is not possible to define a lower bound to the individual metrics it is
also not possible to set a lower bound to the DPS metric.

Table 6
Number of different models that will be evaluated across datasets.

Algorithm Individual models Model-dataset pairs

MEH 4.95 k 19.8 k
LLDMax 1 k 4 k
LLDVote 11 k (50 Hz); 9.5 k (60 Hz) 220 k; 19 k
SLLDMax 1 k 4 k
SLLDVote 11 k (50 Hz); 9.5 k (60 Hz) 220 k; 19 k

47,950 109,800

Table 7
Parameter ranges for the expert heuristic event detector.

Parameter Min Max Increment

G0 0 5 1 (s)
w0 1 5 1 (s)
w1 1 5 1 (s)
Telap 0 5 0.5 (s)
Eedge 1, 0.5Fs, Fs

Table 8
Parameter ranges for log-likelihood and simplified log-likelihood detectors with
voting activation.

Parameter Min Max Increment

w0 0.5 5 0.5 (s)
w1 0.5 5 0.5 (s)
wv 0 5 0.5 (s)
vthr 5 * 15 (votes)

Table 9
Parameter ranges for log-likelihood and simplified log-likelihood detectors with
maxima activation.

Parameter Min Max Increment

w0 0.5 5 0.5 (s)
w1 0.5 5 0.5 (s)
Mpre 0.5 5 0.5 (s)

L. Pereira and N. Nunes Sustainable Cities and Society 62 (2020) 102399

6



3.2. Performance metric calculation

In this step, the 23 performance metrics were calculated for each of
the models returned by the parameter sweep. To this end, the number
of true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN) of each model had to be counted. This was done by
comparing the events triggered by each model with the actual events in
the corresponding dataset (i.e., the ground-truth).

To accomplish this, a tolerance interval in which the detected events
should fall to be considered correct detections was defined. This in-
terval is defined by Eq. (3) and is based on a tolerance value that was
added to account for eventual ambiguity when determining exactly
where an event occurs during the labeling process (Anderson, 2014).

= +[ground_t ruth tolerance, ground_t ruth tolerance] (3)

In previous work on this topic (Anderson, 2014) this parameter was
set to vary between one and 6 s, but no significant changes were found
for more than 3 s. Consequently, it was decided to set this parameter to
range between zero and 3 s with variable steps, as defined by the set τ in
(Eq. (4)), where Fs is the sampling rate of the dataset.

= × × × ×F F F F F{0, 1, 5, 15, , 1.5 , 2 , 2.5 , 3 }s s s s s (4)

Fig. 2 shown an example of three ground-truth power events and the
respective TP ranges for the tolerance intervals given by Fs, 2Fs, and 3Fs.
The figure also presents the events detected by two different algo-
rithms, exemplifying how different the detection positions can be.

Regarding the process of creating the confusion matrix, an algo-
rithm that follows the logic presented in Fig. B.1 of Appendix B had to
be developed. Given a list of detected events and another with the
ground-truth data, the algorithm works as follows:

1. For each ground-truth event, if there are detections that fall within
the interval Ω given by Eq. (3), the event that is closer to the ground-
truth position (in absolute distance) or the one that was detected
first (in the case of equidistant detections) is considered a TP,
whereas the others must be compared with the next ground-truth
event. Otherwise, if no detections happened within the specified
interval, a FN is added.

2. The detected events that do not fall within any of the possible in-
tervals Ω (one per each ground-truth event) are considered FP.

3. When all the detected and ground-truth events have been processed,
the TN are calculated by subtracting the TP, FN and FP from the
number of samples in the dataset. I.e., all the positions where an
event could have happened.

To demonstrate the algorithm, Table 10 shows the results when the
algorithm is applied to the data from Fig. 2. As can be observed, with a
zero-tolerance, none of the detected power events is considered a TP.
Likewise, it can also be observed that in the case of event detector
number 2, there are only two TPs even though more than one event falls
whit-in the tolerance intervals.

3.3. Calculation of the metric pairwise correlations

In this step the linear (Pearson) and rank (Spearman) pairwise cor-
relations between the 27 performance metrics (including the TP, FP, TN
and FN) were calculated. This returned a total of (27 × 26)/2 =351
unique pairwise correlations per coefficient.

It is important to remark that unlike the Pearson coefficient that is
based on the metric values, the Spearman coefficient is based on the
ranking obtained from the metric value. In this work, the ranks were
calculated according to the competition ranking strategy, in which me-
trics with equal value receive the same ranking number and a gap is left
in the rank values, thus guarantying that ties do not modify the ranks
given to the remaining metrics.

The selection of this ranking strategy is essential since we are trying
to assess the consistency of the ranks across models and datasets. As
such, it is necessary that the range of the rankings (worst to best) re-
mains consistent independently of the number of ties that may happen.
This would not happen if, for example, we had chosen the dense ranking
strategy in which the next element always receives the immediately
following ranking number independently of ties.

3.4. Calculation of the average correlation matrices

Since each model is evaluated ten times in each of the four datasets,
there was a total of 200 correlation matrices per correlation coefficient
(10 tolerance values× 5 algorithms× 4 datasets). From these 200

Fig. 2. Event detection example showing three ground-truth events and three of the possible TP ranges.

Table 10
Confusion matrices obtained for the event detection results presented in Fig. 2.

Event Detector 1 Event Detector 2

0 Fs 2Fs 3Fs 0 Fs 2Fs 3Fs

TP 0 3 3 3 0 2 2 2
FP 3 0 0 0 4 2 2 2
FN 3 0 0 0 3 1 1 1
TN 1754 1757 1757 1757 1753 1755 1755 1755
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matrices, a cross-dataset correlation matrix was calculated for each
coefficient. The process was as follows:

1. The 200 matrices were averaged (arithmetically) based on the al-
gorithm, which resulted in 40 correlation matrices (10 tolerance
values× 4 datasets).

2. These 40 matrices are averaged by tolerance to create one matrix
per dataset. This resulted in four matrices.

3. The final cross-dataset correlation matrix was calculated by aver-
aging the correlation matrices of each dataset.

It is important to remark that under no circumstances, the evalua-
tion results of the different model-dataset pairs are merged. Instead,
only the pairwise metric correlations are averaged, thus avoiding biased
conclusions due to the possibility that good results in one dataset can
compensate for poor results in others and vice-versa. Furthermore,
given the very high number of models (47,950), it is not expected that
high pairwise correlations in some models are shadowed by low cor-
relation in others. Another option would be to use the median, but this
would report only the central tendency, therefore shadowing the effects
of very low and very high pairwise correlation in some values.

3.5. Hierarchical clustering

In this step, the clusters from the resulting cross-dataset correlation
matrices were built employing hierarchical clustering. To do so, it was
necessary to define the dissimilarity and linkage functions. The former
is used to define the distance between two clusters (or metrics),
whereas the latter is used to join (i.e., group) the different pairs of
metrics and clusters.

Regarding the former, this work used the dissimilarity function
defined in Eq. (5), where D is the distance and |C| is the absolute value
of the correlation between metric pair.

=D C1 | | (5)

This dissimilarity measure is known to discriminate well between all
correlated pairs, independently of the direction, since the pairs with
“stronger” correlation are ordered correctly from the bottom
(|C| = 1.0) to the top (|C| = 0.0). Thus this measure is more suitable
for graphical representation using dendrograms (Glynn, 2005).

As for the linkage function, the average-group distance was used.
This function joins an existing group to the element (or group) whose
average distance to the group in minimum. This method is also known
as Un-weighted Pair Group Method with Arithmetic Mean (UPGMA)
and the distance between two groups, A and B, is given by Eq. (6).

= ×D
A B

d a b1
| || |

( , )
a A b B

AB
(6)

Where d is a distance function (in our case the Euclidean distance) and
|A| and |B| are the size of groups A and B, respectively.

4. Results and discussion

This section presents the obtained results and the respective dis-
cussion. This is done in two steps, first, for the individual pairwise
correlations, and after this, for the metrics clusters that emerge from the
correlation matrices.

4.1. Pairwise correlations

The average pairwise correlations across the four event detection
scenarios are presented in Fig. 3 with the rank and linear correlations in
the lower and upper triangles, respectively. The average correlations
per metric are also presented in Fig. 4. A heat map was used to color-
code the pairwise correlations, from green (higher) to red (lower).

For additional information, the respective standard deviation values

are also made available in Appendix C. A different heat map was used to
color-code the standard deviation values, from green (lower) to red
(higher).

When examining the correlation results shown in Fig. 3, a first ob-
servation is that the Average Power Change (APC) metrics do not cor-
relate well with any of the other metrics. Furthermore, considering that
APCFP and APCFN are just the TPCFP and TPCFN metrics normalized by
the number of events it is possible to conclude that APC metrics will
evidence substantial variations depending on the number and the am-
plitude of the power events. For example, if an event detector A fails to
detect (FN) all the power events under 50 W but only fails to detect one
power event of 100 W, it will still have a APCFN of about 50 W. On the
other hand, an event detector B that only misses one event with 100 W
will have a APCFN of 100 W. Hence, under this metric algorithm, A
would be considered better than B, even though it misses more events.

Another general observation concerns to the relatively strong cor-
relation (> 0.5 in absolute value) between most of the other metrics in
Fig. 4. The only exceptions to this trend are F1, F2, DPSPR and SMCC
with an average correlation of only 0.46. This is particularly interesting
since three out of the four metrics were designed to balance Precision
and Recall (F1, F2 and DPSPR), and still they do not correlate well with
their “parent” metrics. For example, the F2 metric does not have any
pairwise correlation above 0.65, and perhaps even more surprising, it
does not correlate (< 0.5) with either P or R. This result contrasts the
findings in Pereira and Nunes (2017), in which for event classification,
all these metrics appear highly correlated among themselves (≥0.9).

The results in Fig. 3 also reveal that all the four rank-based metrics
have robust correlations between themselves (0.99), as well as with R
(0.99). However, this is just a reflection of the fact that the Specificity
(or True Negative Rate – TNR –) is always close to 1 since the number of
TN is much higher than the amount of FP. Consequently, the AUC
metrics are only reflecting variations in R. Moreover, it is possible to
observe that the DPSRate metric is also very well correlated with the
AUC metrics in both coefficients. In this case, this is a reflection of the
fact that the FPR is always close to 0, meaning that it is also fully
controlled by R. Again, this is a result that contrasts those obtained for
event classification, where AUC metrics appear strongly correlated
among themselves (≥0.94) and all the remaining performance metrics
(≥0.83).

A more specific observation concerns the firm (0.92) pairwise rank
and linear correlations between TPCFN and R. A possible explanation for
this is that most of the missed power events (FN) have a similar power
change value (possibly near to the minimum power threshold), hence
the strong linear and non-linear correlations. Similarly, if we consider
the TPCFP, it is possible to observe a relatively strong correlation (0.63)
in the non-linear coefficient that is not followed by a strong linear re-
lationship. Hence, it is expected that some TPCFP ranks will be relatively
close to those obtained with the other metrics, in particular, those de-
rived from the FP. Still, the lack of a robust linear correlation is a good
indicator that the amount of power change of the FPs is heavily de-
pendent on the dataset characteristics and not so much on the algorithm
configuration (i.e., parameters setup).

4.2. Metric clusters

Overall, it is possible to find 44 metric pairs where at least one of the
coefficients is above 0.9 in absolute value. These are summarized in
Fig. 5, where it is possible to identify three groups that cover 15 of the
23 studied metrics:

1. R, WAUC, TPCFN, DPSRate
2. FPR, FPP, DPSPerc, A, E
3. P, F0.5, F1, SMCC, DPSPR

Additionally, it is possible to observe that the metrics in the first group
are all correlated with the TP and FN, whereas the metrics in the second
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group show strong correlations with the TN and FP.
To further understand the possible metric arrangements, we per-

formed a clustering analysis of the correlation values. Fig. 6 shows the
dendrograms obtained from the ranks (non-linear) and linear pairwise
correlations.

The resulting dendrograms were then split at different cut-off values
(i.e., distances) to determine the number of clusters that the metrics
would form. More precisely, after visual inspection, the dendrograms
were cut at the distances of 0.05 and 0.1. Table 11 lists the obtained
clusters.

A first general observation is the fact that linear and rank correla-
tions return very similar clusters. The only difference is the absence of
DPS metrics in the linear correlation clusters, which is not necessarily
surprising given the quadratic nature of these metrics.

Likewise, it is also possible to observe that A and E appear in the
same cluster. Still, it should be stressed that this result has its pecu-
liarities. More concretely, these two metrics report based on the number
of FP and TN alone (see Fig. 5). Therefore, considering the much larger
number of TN when compared to the number of FP cases, two situations
will occur:

1. Accuracy and error-rate will always have values very close to 1 and
0, respectively. Hence, making these two metrics of no use to report
results.

2. Accuracy and error-rate will report mostly based on the variations in
the number of FP. Hence, the considerably strong pairwise corre-
lations with FPP and FPR (0.92).

Given the high similarity between the linear and non-linear corre-
lation clusters, the following discussion considers only the groups

obtained from the non-linear correlations.
A first specific observation is that with a cut-off distance of 0.05,

only 8 out of 20 metrics will belong to a cluster. More precisely, only
performance metrics with a pairwise correlation of at least 0.99 get
clustered together. Correspondingly, with a cut-off distance of 0.1, only
performance metrics with a pairwise correlation of at least 0.985 get
clustered, and so on until all the metrics are clustered at a maximum
distance of around 2.5. For example, with a cut-off distance slightly
below 0.25 F1 joins SMCC and DPSPR in cluster 4, and with a cut-off
distance of about 0.3 P and F0.5 are joined in a 5th cluster.

Lastly, it is important to remark that F2 remains isolated until very
late in the clustering process and that the same happens with all the
domain-specific metrics except for the TPCFN metric.

5. Research implications and way forward

This section summarizes the findings and significant research im-
plications of this work. The limitations of this work are also presented,
as well as an outline of possible research directions.

5.1. Research implications

The main implications of the obtained results are threefold: (i) un-
covering important behaviors of the performance metrics when applied to the
event detection problem, (ii) highlighting niches for which additional per-
formance metrics should be studied, and new ones created, and (iii) im-
plications for energy estimation performance evaluation.

Regarding the former, this work clearly shows that the extremely
unbalanced nature of the problem (towards TN) has several implica-
tions in the behavior of the performance metrics:

Fig. 3. Non linear (bottom-left triangle) and linear (top-right triangle) correlation results for all four event detection scenarios. (For interpretation of the references to
color in the text, the reader is referred to the web version of this article.)

Fig. 4. Non linear and linear correlations averaged by metric for the four event detection scenarios.
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1. Since the number of TN is much higher than everything else (i.e., TN
⋙TP+ FP+ FN) the Accuracy and Error− rate will always yield
very positive results (very close to 1 and 0 respectively). As such,
these metrics are of no use in this problem, as it was already

suggested in previous literature (Anderson, Bergés, et al., 2012).
2. There is very little correlation between P, R, and any of the Fβ

measures. This is particularly evident in the case of F2, which does
not have a strong correlation with any of the studied metrics.
Ultimately, this is another reflection of the unbalanced nature of the
problem that affects the event detection results. For instance, it is
possible to have detectors with very high P and very low R (i.e.,
conservative detectors) and detectors with very high R at the expense
of very low P (i.e., liberal detectors). Consequently, using P and R
alone can lead to extreme conclusions, since in the case of event
detection, these two metrics tend to report the performance based
solely on minimizing the number of FP or maximizing the number of
TP, respectively.

3. F1, SMCC, and DPSPR have a very low average correlation with the
remaining metrics (< 0.5). Still, they are strongly correlated be-
tween themselves (≥0.97). Hence, it is expected that these metrics
will select the same models most of the time. Nevertheless, it is
likely that SMMC and DPSPR (0.99 pairwise correlation) are less

Fig. 5. List of metric pairs with pairwise correlations above 0.9 in at least of one the coefficients.

Fig. 6. Dendrograms showing rank (left) and linear (right) correlations of the performance metrics across datasets.

Table 11
Clusters formed after cutting the dendrograms of the cross dataset non-linear
and linear correlations.

Distance Rank Linear

0.05 1. [R, WAUC, DPSRate]
2. [FPP, FPR]
3. [A, E]

1. [R, WAUC]
2. [FPP, FPR]
3. [A, E]

0.1 1. [R, WAUC, DPSRate]
2. [FPP, FPR]
3. [A, E, DPSPerc]
4. [SMCC, DPSPR]

1. [R, WAUC]
2. [FPP, FPR]
3. [A, E]
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affected by the unbalance of the data than F1 since the mathematical
formulation of the latter (i.e., the harmonic mean between Precision
and Recall), will make it closer to the smaller value. In this case,
Precision since the number of FP is likely to be higher than the
number of FN.

4. With respect to F0.5 and F2, as expected, the former shows a pow-
erful tendency to ranks the results in the same way as Precision
(pairwise rank correlation of 0.98). Of course, this tendency is ag-
gravated by the fact the Fβ– Measure tends to the smaller value, as
explained in the previous point. As for the latter, in contrast to what
should be expected, there is no correlation with Recall. Instead,
there are slight correlations with DPSPR, SMCC, and F1, which im-
plies that despite putting twice more importance in Recall, F2 is still
very affected by the Precision score.

5. Since the FPR≈ 0 and TNR≈ 1, the studied rank metrics are en-
tirely dominated by Recall and do not add any new information. I.e.,
ROC metrics will rank the algorithms in the same way as Recall.

6. Regarding the DSM, it is clear that these metrics rely heavily on the
data under test. This is particularly evident in the case of the APC
metrics that depend both on the number of power events and re-
spective amplitudes.

The only exception to this is the high correlation (both linear and
rank) between the TPCFN and R, which indicates that most of the missed
events have similar amplitudes (in absolute value).

As for the second research implication, this work also highlights
some areas in which other state-of-the-art metrics should be studied and
possibly new ones created.

1. This study revealed that the metrics that balance P and R are pro-
foundly affected by P and not so much by R. Therefore, it is ne-
cessary to study other metrics related to the Precision-Recall curve
(PRC), which as per the literature, are more suitable to deal with
moderate to substantial imbalanced datasets (Davis & Goadrich,
2006; Saito & Rehmsmeier, 2015). This includes, for example, the
Mean Average Precision (MAP), which is equivalent to the area
under the PR (AUPRC), and the break-even point (BEP), which is the
point in the curve where P and R are the same (Manning, Raghavan,
& Schütze, 2008) (chapter 8).
Another possibility would be to re-define Precision and Recall to
account for the time dimension of the event detection problem. One
option would be to discard the samples during steady-state opera-
tion (i.e., when no appliances are changing the mode of operation
(Pereira, Ribeiro, & Nunes, 2017)). Since the majority of the TNs lie
in these regions, such an approach would help reduce the un-
balanced nature of the problem.

2. This work has also highlighted the potential of DSM to unveil im-
portant characteristics of the evaluated algorithms (e.g., TPCFN and
TPCFP). As such, it is important to conduct further studies using
these metrics. Furthermore, future work should aim at defining new
DSM that take into account the important properties of the NILM
problem. For example, since the ON and OFF events are not in-
dependent (e.g., for any appliance, the OFF should not come before
the ON), it would be important to define metrics that take into
consideration the ordering of the events. Likewise, it would be im-
portant to have metrics that take into account the complexity of the
dataset (e.g., number of appliances, number of simultaneous or
near-simultaneous events), and disaggregation information such as
the number of missed cycles (i.e., when both ON and OFF are
missed).

3. Lastly, it would also be relevant to introduce metrics that take into

consideration concepts from cost-sensitive learning (Elkan, 2001).
For instance, power events from small appliances may be less re-
levant than those from larger appliances. Hence they should have a
smaller miss-detection/miss-classification cost. On the other hand,
rarely used appliances should have a high miss-detection/miss-
classification cost, since failing to correctly identify the few occur-
rences of such appliances will result in a significant underestimation
of their consumption.

Finally, concerning the last research implications, this work also
sheds some light with respect to performance metrics for the energy
estimation problem.

1. Since there are several appliances that are only used for short per-
iods (e.g., Kettles, Toasters), the energy estimation problem is also
heavily affected by the dataset imbalance problem. To state more
concretely, TNs (i.e., periods with zero consumption) will be much
higher than TP (i.e., periods where consumption > 0). As such,
when using metrics under the event detection category to evaluate
the performance of energy estimation algorithms, most of the re-
search implications of this paper should be taken into consideration.

2. Like with the Domain Specific Metric for event detection, energy
estimation metrics (e.g., Relative Error (RE), Mean Absolute Error
(MAE), and Energy Error (EE)) will be heavily affected by the un-
derlying ground-truth data. For example, a metric like MAE will
tend to report higher values in a dataset A with more power con-
sumption than a dataset B, which does not necessarily mean that the
algorithm is performing worst in A than in B. As such, even though
there are several metrics already defined under the energy estima-
tion category (Makonin & Popowich, 2017; Mayhorn et al., 2016;
Pereira & Nunes, 2018), it is safe to say that proper cross-dataset
benchmarks will require energy estimation metrics that take into
consideration the power levels of the different datasets. As for now,
the only alternative is to resort to normalized variations of these
metrics. E.g., normalizing with respect to the power range, or the
total energy.

5.2. Limitations and future work directions

As it was mentioned in 2.2, at the time of this research, only one of
the publicly available datasets offered labeled data. As such, and de-
spite it was possible to overcome this issue with two additional weeks of
fully labeled data, this process introduces some limitations: First, the
two datasets were labeled from ground-truth data that was collected
every 6 s, and there was no ground-truth for all the appliances. Second,
the same person labeled the two datasets; as such, the labels are subject
to the interpretation of one single agent. Consequently, to better gen-
eralize the results from this work, future iterations should look at in-
corporating properly curated datasets, i.e., dataset whose labels have
been previously validated by other researchers.

Future work should include different event detection algorithms, in
particular, those under the matched filters category. Likewise, another
important research direction would be to consider the possibility of
finding which sets of metrics are more suitable for each class of loads.
For example, such knowledge could be used to define ensembles of
event detection algorithms, each one targeting a particular type of load.

More importantly, future iterations of this work should also consider
performance metrics for energy estimation. While only a few authors
have addressed the energy estimation step in event-based NILM (Giri &
Bergés, 2015; He et al., 2018; Zhao et al., 2016), there are many event-
less implementations (e.g., HMM and Deep ANNs) (Gomes & Pereira,
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2020; Harell et al., 2019; Makonin, Popowich, et al., 2016; Murray
et al., 2019) and public datasets (Pereira & Nunes, 2018) that can serve
as a basis for this task. Furthermore, despite there is a category of
metrics dedicated to energy estimation, it would be of crucial im-
portance to also evaluate the potential of the metrics under the event
detection category to assess the performance of energy estimation al-
gorithms.

Given the scarcity of energy estimation algorithms for event-based
NILM, another exciting research direction would be to understand if the
performance of event detection and classification algorithms can be
good predictors of energy estimation performance. For instance, if for
each appliance we set all the samples between ON and OFF transitions
to one (1) and the remaining to zero (0), it is possible to calculate ap-
proximations of metrics such as Precision and Recall.

Another critical research contribution for performance evaluation in
NILM would be to study the interconnections between the different
algorithms that comprise an end-to-end NILM system by introducing
the concept of ceiling analysis (Roncancio, Hernandes, & Becker, 2013).
This kind of analysis is associated with the ceiling effect, in which an
independent variable no longer affects the dependent variable after
reaching a certain level. For example, in the particular case of event-
based NILM, this effect can be seen as the impossibility of the event
detection step (independent variable) to increase the performance of
the event classification step (dependent variable) because it has already
reached the “ceiling”.

It is also relevant to mention the existence of other methods that
could have been used to study the behavior of the performance metrics.
These include the application of different rank correlation coefficients,
like Kendall's tau and Spearman's footrule (Kendall, 1938; Kumar &
Vassilvitskii, 2010; Spearman, 1906), and graphical representation
methods such as multidimensional scaling (MDS) and non-linear map-
ping (NLM) (Borg & Groenen, 2005; Carroll & Arabie, 1980; Kumar &
Leone, 1991).

Finally, it is also important to shed some light on the computational
complexity of running such models and provide some suggestions that
can save on computational resources while still obtaining equivalent
results. Note that this discussion focuses on time complexity, which in
this case is affected by the duration and number of events in the data
set, and the number of tunable parameters in the event detection al-
gorithms.

Concerning the testing data, assuming a constant rate of power
events, the time complexity should be linear with the increase in the
data set duration. I.e., the time required to run a detection model in two
weeks of data would be twice the time to do it for one week. While in
the present, computing power may not present a severe issue in many
cases, it is possible to considerably reduce this time by avoiding com-
putation across the entire data set. Instead, the computation can be
performed in the non-steady state areas defined in advance based on the
position of the power events in the ground-truth data. Nevertheless,
besides reducing the number of computational operations, it should be
noted that this would also considerably reduce the number of TN cases,
which would have to be accounted for when calculating the perfor-
mance metrics.

With respect to the number of tunable parameters of the detection
algorithm that can quickly scale the number of possible models to un-
realistic numbers, a possible solution would be to first run all the

models in sub-set of the data (e.g., one day), and based on the obtained
results select the ranges of values that will change in each parameter.
This would considerably reduce the number of models, while still
providing an excellent estimation of each algorithm's possible out-
comes.

6. Conclusion

This paper studied the relationships between 23 performance me-
trics when used to assess the performance of event detection algo-
rithms. To this end, 47,950 event detection models were executed
across four (4) event detection scenarios taken from two public data-
sets. Linear and non-linear correlations and hierarchical clustering were
then used to investigate the existing of any pairwise correlations as well
as the formation of clusters of metrics.

Ultimately, this in-depth analysis of the pairwise correlations and
the resulting clusters represents an advancement of the state-of-the-art
towards defining a consistent set of metrics to evaluate event detection
algorithms.

The key take-away messages are:

1. Balancing Precision and Recall with traditional Fβ – Measure will be
biased towards the former. SMMC and DPS are better metrics, al-
though they still exhibit some bias towards Precision. Therefore,
future work must address the lack of metrics to properly balance
Precision and Recall in NILM, since the imbalance does not affect
only event detection algorithms.

2. ROC based metrics (i.e., based on Recall and FPR) are of very little
use in event detection since they are fully controlled by the former.

3. Domain-Specific Metrics are useful to gain institutions about the
algorithm performance on a specific dataset. Yet, these should not
be used for cross-dataset benchmarks since they are very dataset
dependent.

4. It is of crucial importance to define new event detection and energy
estimation metrics that take into consideration the imbalanced
nature of the problem, as well as the differences in energy across the
datasets.
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Appendix A. Equations to calculate the performance metrics

Table A.1, Table A.2, Table A.3

Table A.1
Confusion matrix based performance metrics.

Metric Equation

Accuracy = +
+ + +A TP TN

TP FP TN FN
Error-rate = +

+ + +E A1FP FN
TP FP TN FN

Precision = +P TP
TP FP

Recall = +R TP
TP FN

False Positive Rate = +FPR FP
FP TN

False Positive Perc. = +FPP FP
TP FN

Fβ - Measure = + × ×
× +

F (1 ) P R
P R

2
( 2 )

Standardized MCC = +SMCC 1 MCC
2

D. P. Score P-R DPSPR = P2 +R2 − 2 × (P+ R) + 2
D. P. Score TPR-FPR DPSRate = TPR2 + FPR2 − 2 × TPR+ 1
D. P. Score TPP-FPP DPSPerc = TPP2 + FPP2 − 2 × TPP+ 1

Matthews CC = × ×
+ × + × + × +

MCC TP TN FP FN
(TN FN) (TN FP) (TP FN) (TP FP)

Table A.2
Rank based performance metrics.

Metric Equation

Wilcoxon AUC
Wicoxon AUC Balanced WAUCB

= × +RWAUC ( TNR)1
2

=WAUC× BF
Gemetric Mean AUC = +RGAUC TNR2

Biased AUC = × × +R BBAUC ( TNR)1
2

True Negative Rate = +TNR SpecificityTN
TN FP

Balancing Factor BF= 1 − |R− TNR|

Bias
=B

, if target is the majority class

, if target is the minority class

R
2

TNR
2

Table A.3
Domain specific performance metrics.

Metric Equation

Total Power Change FP TPCFP = ∑f∈FP|ΔPf|
Total Power Change FN TPCFN = ∑m∈FN|ΔPm|
Avg. Power Change FP = ×APC TPCFP

1
|FP| FP

Avg. Power Change FN = ×APC TPCFN
1

|FN| FN
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Appendix B. Contingency matrix calculations

Appendix C. Standard deviation for cross-dataset correlation matrices

Fig. C.1, Fig. C.2

Fig. B.1. Flowchart of the algorithm used to create the contingency table of the event detection algorithms.

Fig. C.1. Standard deviation values for the non linear (bottom-left triangle) and linear (top-right triangle) correlations, across all four event detection scenarios.
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