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Abstract: The advance in energy-sensing and smart-meter technologies have motivated the use of
a Non-Intrusive Load Monitoring (NILM), a data-driven technique that recognizes active end-use
appliances by analyzing the data streams coming from these devices. NILM offers an electricity
consumption pattern of individual loads at consumer premises, which is crucial in the design of
energy efficiency and energy demand management strategies in buildings. Appliance classification,
also known as load identification is an essential sub-task for identifying the type and status of an
unknown load from appliance features extracted from the aggregate power signal. Most of the
existing work for appliance recognition in NILM uses a single-label learning strategy which, assumes
only one appliance is active at a time. This assumption ignores the fact that multiple devices can be
active simultaneously and requires a perfect event detector to recognize the appliance. In this paper
proposes the Convolutional Neural Network (CNN)-based multi-label learning approach, which links
multiple loads to an observed aggregate current signal. Our approach applies the Fryze power theory
to decompose the current features into active and non-active components and use the Euclidean
distance similarity function to transform the decomposed current into an image-like representation
which, is used as input to the CNN. Experimental results suggest that the proposed approach is
sufficient for recognizing multiple appliances from aggregated measurements.

Keywords: multi-label learning; Non-intrusive Load Monitoring; appliance recognition; fryze power
theory; V-I trajectory; Convolutional Neural Network; distance similarity matrix; activation current

1. Introduction

Recently, most of the world has witnessed a rapid increase in energy use in buildings (residential
and commercial). Residential and commercial buildings consume approximately 60% of the world’s
electricity (The United Nation’s Environment Programme’s Sustainable Building and Climate Initiative
(UNEP-SBCI)). Energy efficiency and conservation in buildings can be generally achieved through
replacing devices with more efficient ones, improving the efficiency of the building (for example,
using better insulation), or optimizing energy usage through behavior changes and application of
cost-effective technologies [1]. Unlike other strategies for building energy saving, optimizing energy
use through behavior changes is very fast and highly profitable. With the application of cost-effective
technologies, this strategy can also provide end-use appliances consumption to households that give
insight into what appliances are used, when they are used, how much power they consume, and why
such consumption [2]. The end-use appliances consumption is also useful for estimating the amount
of energy demand at consumer premises [3]. It further increases the awareness about the energy
consumption behavior of consumers.
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The recent advance in energy-sensing and smart-meter technologies has led to the rise of
Non-Intrusive Load Monitoring (NILM) [4,5]. NILM is a computational technique that uses aggregate
power data monitored from a single point source such as a smart meter or current or voltage
sensor-plug to infer the end-appliances running in the building and estimate their respective power
consumption [6]. It relies on signal processing and machine learning techniques that analyze appliance
patterns from aggregate power measurements. NILM provides households with cost-effective
monitoring of appliance-specific energy consumption, and it can be easily integrated into existing
buildings without causing any inconvenience to inhabitants. Several machine learning techniques
have been proposed to address the energy-disaggregation [7–12].

Recognizing appliances from aggregated power measurements is one of the vital sub-tasks of
NILM [11,13]. It uses machine learning techniques to analyze the pattern of the electrical features
vector extracted from aggregated measurements and classifies them into the respective appliance
category. Feature vectors are obtained after the state-transitions of appliances have been detected.
These features are extracted at different sampling rates (high-frequency or low-frequency) depending
on the measurements and electrical characteristics needed by the NILM algorithm [14]. The high
sampling frequency offers the possibility to consider fine-grained features such as voltage-current
(V-I) trajectory, harmonics, wavelet coefficients from steady-state, and transient behavior. As a result,
several techniques for appliance recognition applying high-frequency features such as V-I trajectory
have been proposed [15,16].

It has been demonstrated that transforming the V-I trajectory into image representation and
feeding it as the input to machine learning classifiers improves classification performance [11,14,17–21].
However, the presented works use single-label learning, thus assuming that only one appliance is
active at a time. This strategy ignores the fact that multiple devices can be active simultaneously as
well as dependencies between appliance usage. It further requires a perfect event detector to extract the
appliance features just after an event has been detected, particularly in aggregated measurements [19].
In contrast to single-label learning, multi-label learning links multiple appliances to an observed
aggregate power signal [22,23].

Several studies have demonstrated that multi-label learning represents a viable alternative to
conventional NILM approaches [23–27]. For example, the work by [25], investigated the possibility
of applying a temporal multi-label classification approach in non-event based NILM where a novel
set of meta-features was proposed. In [26] an extensive survey for the multi-label classification and
the multi-label meta-classification framework for low-sampling power measurements is presented.
Recent studies have explored deep neural networks for multi-label appliance recognition in NILM
[23,24], yet these approaches also rely on low-frequency data.

Instead, this paper presents a CNN-based multi-label appliance classification approach.
The proposed method uses the current waveform generated from the aggregated measurements,
taken in brief windows of time containing one or more than one event. The underlying assumption
of this method is that the extracted aggregated current will be the summation of active appliances.
Therefore, by training a classification model to learn the patterns of different combinations, it is possible
to successfully identify such appliances when these appear in a future time window.

To improve the discriminating power of our method, we apply the Fryze power theory,
which enables the decomposition of the current waveform into active and non-active components
in time-domain [20,28]. Our research hypothesis is that the sum of the active and non-active
components will exhibit unique and consistent characteristics based on the appliances that are running
simultaneously, hence providing a distinctive feature for multi-label classification.

The decomposed current is then transformed into an image representation using the
Euclidean-distance-similarity matrix [29] and fed into the CNN for multi-label classification.
The proposed approach is evaluated against the PLAID dataset [30], which consists of aggregated
voltage and current measurements at a 30 kHz sampling rate. The source code used in our experiments
is publicly available on a GitHub repository (https://github.com/sambaiga/MLCFCD).

https://github.com/sambaiga/MLCFCD
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The main contribution of this paper is a multi-label learning strategy for appliance recognition
in NILM. The proposed approach associates multiple appliances to an observed aggregated current
signal. Overall, this contribution folds into four sub-contributions

1. We first demonstrate that for aggregated measurements, the use of activation current as an input
feature offers improved performance compared to the regularly used V-I binary image feature.

2. Second, we apply the Fryze power theory and Euclidean distance matrix as pre-processing steps
for the multi-label classifier. This pre-processing step improves the appliance feature’s uniqueness
and enhances the performance of the multi-label classifier.

3. Third, we propose a CNN multi-label classifier that uses softmax activation to capture the relations
between multiple appliances implicitly.

4. Fourth, we conduct an experimental evaluation of the proposed approach on an aggregated
public dataset and compare the general and per-appliance performances. We also provide an
in-depth error analysis and identified three types of errors for multi-label appliance recognition
in NILM. Finally, a complexity analysis of the proposed approach method is also presented.

The remainder of this paper is organized as follows: Section 2 summarizes related works
while Section 3 introduces the methods utilized in this work. Section 4 describes the experimental
design. Section 5 presents the results and discussion of the performed evaluations. Finally, Section 6
summarises the contributions of this paper and suggests future research direction.

2. Related Works

The concept of multi-label classification for NILM has gained momentum recently, as the
systematic review finds in [26]. Besides an extensive survey of the topic, the authors present the
multi-label meta-classification framework (RAkEL) and the bespoke multi-label classification algorithm
(MLkNN), where both employ time-domain and wavelet-domain feature sets. Other approaches to
multi-label NILM comprise restricted Boltzmann machines [31], and multi-target classification [32].

In [33], the authors present an algorithm that uses Sparse Representation based classification
for multi-label NILM. Furthermore, the authors compare their algorithm to other cutting edge
multi-label NILM approaches such as classification based on extreme learning machines (ELM) [34],
graph-based semi-supervised learning [35], and an approach based on deep dictionary learning and
deep transform learning [36]. Nalmpantis and Vrakas [37] present a multi-label NILM based on
the Signal2Vec algorithm that maps any time series into a vector space. A deep neural network
(DNN) based multi-label NILM applying active power features at low-sampling frequency is proposed
in [23,24]. In [23], the authors propose an approach that builds on Temporal Convolutional Networks
(TCNN). At the same time, Massidda et al. [24] applied Fully Convolutional Networks (FCNN) for
multi-label-learning in NILM, adopting some methods used in semantic segmentation.

Even though multi-label learning was found to be competitive with state-of-the-arts NILM
algorithms, none of the previous works have considered the V-I trajectory-based features for
multi-label-classification. Existing NILM methods that use V-I based features for appliance
classification uses single-label learning [11,14–21,38]. The use of V-I based features for appliance
classification was first introduced in [15], where shape-based features extracted from V-I (e.g., number
of self-interceptions) were used as input to a machine learning classifier. A review and performance
evaluation of the seven load wave-shape is presented in [39]. The shape-based feature was found to
have a direct correspondence to operating characteristics of appliances as contained in the current
wave-shape. Several other features such as asymmetry, mean line and self-intersection assessment
extracted from V-I waveforms were used to classify appliances in [16]. However, this approach
compresses the information in the V-I-trajectory into a limited amount of features extracted solely
based on deep engineering knowledge.

Against this background, other researchers demonstrated that transforming the V-I trajectory
into a binary image representation improves classification performance [17,18] by leveraging on
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state-of-the-art deep-learning algorithms for image recognition. For example, De Baets et al. [14,19]
transforms the V-I trajectory into weighted pixelated V-I images and uses a CNN classifier. In another
work, a hardware implementation of the appliance recognition system based on V-I curves and a
CNN classifier is also proposed [21]. The work by [20,28] demonstrated that applying the Fryze
power theory to decompose the current into active and non-active components could enhance the
uniqueness of the V-I binary image and consequently improve classification performance. The work
by Teshome et al. [28] applied the non-active current and non-active voltage (V-I f ) for appliance
recognition. Liu et al. [20] further demonstrated that the visual representation of (V-I f ) is robust
enough to be used in Transfer learning. Recently it has been shown that transforming the V-I into
compressed distance similarity matrix consistently improves the appliance classification performance
compared to the commonly used V–I image representation [11,13].

Motivated by these two works, we apply decomposed currents as input features for recognizing
multiple running appliances. Still, unlike Liu et al. [20], and Teshome et al. [28], we transform the
decomposed current into a 2D Euclidean-distance similarity matrix, which is later used as the input to
the CNN model.

3. Proposed Methods

The goal of appliance recognition in NILM is to identify appliance states sm
t from the aggregate

measurements xt composed of individual appliance measurements ym
t such that m = 1, 2, . . . M,

where M indicates the number of appliances such that

xt =
M

∑
m=1

ym
t · sm

t + εt (1)

where εt represents both any contribution from appliances not accounted for and measurement
noise [40]. We refer to this as a multi-label NILM problem, where given observed aggregate
measurements, the unobserved appliance states st of electrical appliances are estimated.

Specifically, the problem is formulated as follows: Let X ∈ RT×d = {x1 . . . xT} denote a set of
input features derived from the aggregate measurements of M appliances and Y ∈ RT×M indicates the
associated appliance measurements, where each appliance has k states denoted as sm = {sm

1 , . . . sm
k }

such that sm
k ∈ {0, 1}. The matrix S ∈ RT×M indicates the associated multi-label states. Thus,

given D = {xt, st|t = 1, . . . , T} datasets, the goal is to learn a multi-label classifier that predicts
the state vector st = {sm

t , . . . sM
t } from the input aggregate power feature vector xt.

The proposed approach is summarized in Figure 1.

Feature Extraction Fryze-
Decomposition PAA Distance-similarity

function
CNN Multilabel

learning

Aggregate current and
voltage measurements

Predicted
appliances

Text

Figure 1. The block diagram of the proposed method. The dotted block is the pre-processing
block where PAA stand for Piecewise Aggregate Approximation, a dimension reduction method
for high-dimensional time series signal.

3.1. Feature Extraction from Aggregate Measurements

In this work, we consider the appliance feature extracted from high-frequency aggregate voltage
and current measurements in brief windows of time. This feature contains one or more than one event
and allows us to distinguish multiple appliances running simultaneously, as illustrated in Figure 2a.
We define an activation current i and voltage v to be a one-cycle steady-state signal extracted from the
aggregate current and voltage waveform.
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To obtain the activation waveforms from aggregate measurements we measure Nc = 20 cycles of
current and voltage {i(a), v(a)} after an event. As depicted in Figure 2b, the Nc circles correspond to
steady-state behavior and is equivalent to Ts × Ns samples where Ts =

fs
f , fs is sampling frequency

and f is mains frequency. These cycles are aligned at the zero-crossing of the voltage and there-after
one-cycle activation current i and voltage v with size Ts is extracted, as illustrated in Figure 2.
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Figure 2. (a) Aggregated current signal for different events. (b) Twenty cycles of current after an event.
(c) Extracted activation currents for different events. The activation current of the event at time i is the
summation of the activation current for the all running appliances.

3.2. Feature Pre-Processing

As discussed in the related work section, the V-I binary trajectory mapping has been one of the
favored features for appliance classification in single-label learning. However, in this work, we consider
the features derived from source current i(t) in recognizing multiple running appliances from aggregate
measurements. Through experimentation, it was found that the aggregated activation voltage v(t)
has an almost identical pattern for most of the events, as illustrated in Figure 3. This suggests that the
activation current i reflects the electrical properties of an appliance.
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Figure 3. Activation voltage v(t) for different appliances in the PLAID dataset. The voltage has an
almost identical pattern for all the appliances.

Therefore, we propose the decomposed current features obtained by applying the Fryze power
theory [41].
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The Fryze power theory decomposes activation current into orthogonal components related
to electrical energy in time-domain [41]. According to this theory, it is possible to decompose the
activation current i into active i(t)a and non-active components i(t) f , such that:

i(t) = i(t)a + i(t) f (2)

The active current i(t)a is the current of the resistive load, having the same active power at the
same activation voltage. In Fryze’s theory, the active power is calculated as the average value of
i(t) · v(t) over one fundamental cycle Ts defined as follows:

pa =
1
Ts

Ts

∑
t=1

i(t)v(t) (3)

The active current is therefore defined as

ia(t) =
pa

v2
rms

v(t) (4)

where vrms is the rms voltage, expressed as follows:

vrms =

√√√√ 1
Ts

Ts

∑
t=1

v(t)2 (5)

The current ia(t) represents the resistance information and is purely sinsoidal. The non-active
component is then equal to

i(t) f = i(t)− i(t)a (6)

Figure 4 presents the source currents and the corresponding active and non-active components for
the twelve appliances in the PLAID dataset. It can be observed from Figure 4 that the active component
approaches a pure sine wave even for non-periodic load currents like a Compact Fluorescent Lamp
(CFL) and Laptop.

Once the activation-current has been decomposed, the Piece-wise Aggregate Approximation
(PAA) is used to reduce the dimensional of the decomposed signal ia and i f from Ts to a predefined
size w. PAA is a dimension reduction method for high-dimensional time series signal [42]. This is a
crucial pre-processing step as it reduces the high-dimensionality of the extracted activation current
feature with minimal information loss.

To further enhance the uniqueness of the decomposed-current feature, a Euclidean distance
function du,v = ||i(t)u − i(t)v||2 that measures how similar or related two data points are is applied on
the active and non-active current. The distance similarity function is widely used as a pre-processing
step for many of the machine learning approaches such as K-means clustering and K-nearest neighbor
algorithms [29,43].The distance similarity matrix Dw,w for points i(t)1, i(t)2, . . . i(t)w is the a matrix
of squared euclidean distances representing the spacing of a set of w points in euclidean space [29]
such that

Dw,w =


0 d1,2 · · · d1,w

d2,1 0 · · · d2,w
...

...
. . .

...
dw,1 dw,2 · · · 0

 (7)

Figure 5 depicts the activation current, its components and their corresponding distance similarity
matrix when a CFL and a laptop charger are active.
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Figure 4. Normalized source current i(t) and their respective active i(t)a and reactive components
i(t) f after applying Fryze power theory. The current is normalized for visualization purposes.
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Figure 5. Currents and distance matrix when Compact Fluorescent Lamp (CFL) and laptop charger are
active. (a) Source current i(t). (b) Active current ia(t). (c) Non-active current ia(t). (d) Distance matrix
for source current. (e) Distance matrix for active current (f) Distance matrix for non-active current.

3.3. Multi-Label Modeling

A common approach that extends neural networks to multi-label classification is to use one neural
network to learn the joint probability of multiple labels conditioned to the input features representation.
The final predicted multi-label is obtained by applying a sigmoid activation function [23]. This process
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requires an additional thresholding mechanism to transform the sigmoid probabilities to multi-label
outputs. However, building such a threshold function is very challenging. Therefore a default threshold
of 0.5 is often employed [44].

To address this challenge, we propose a CNN multi-label classifier that uses softmax to implicitly
capture the relations between multiple labels. As shown in Figure 6, the proposed CNN multi-label
classifier consists of a four-stage CNN layer each with 16, 32, 64, and 128 feature maps, 2× 2 strides.

The first two CNN layers use a 5× 5 filter size, while the last two layers use a 3× 3 filter size.
The four CNN layers are followed by a batch normalization layer and the ReLU activation function.
The last CNN layer is followed by an adaptive average pooling layer with an output size of 1× 1.
The CNN layer takes current-based features as inputs and produces a latent-feature vector zi.

4-stage 
CNN layers POOL Dropout FC1 BN ReLU FC2 BN ReLU Dropout FC3 SoftmaxInputs

Figure 6. Block diagram of the Convolutional Neural Network (CNN) multi-label classifier. It consists
of a CNN encoder to learn feature representation from the input feature, and the output layer to
produce the predicted labels.

The output layer consists of three FC layers with a hidden size of 502, 1024, and 2M, respectively.
The last layer is followed by an adaptive average pooling layer and three linear layers with a hidden
size of 5012, 1024, and M, respectively. M is the maximum number of appliances available. This layer
receives the output of the CNN layer to produce an output Os of size (2×M). The final predicted
multi-label states, ŝt, is obtained by applying the softmax activation function ŝt = softmax(Os).
Thus, the proposed multi-label classifier learns the joint representation of multiple appliances states
conditioned on activation-based input features.

To learn the model parameters, a standard back propagation is used to optimize the cross-entropy
between the predicted softmax distribution and the multi-label target of each input feature.

L(ŝ, s) = − 1
N

N

∑
t=1

M

∑
i=1

sti · log
exp(ŝti)

∑2
j exp(ŝtj)

(8)

The joint cross-entropy loss implicitly captures the relations between labels.
The CNN multi-label classifier is trained for 500 iterations using the Adam optimizer with an

initial learning rate of 0.001, betas of (0.9, 0.98), and a batch size of 16. A factor of 0.1 reduces the
learning rate once the learning stagnates for 20 consecutive iterations. To avoid over-fitting, early
stopping with patience is used where the training model terminates once the validation performance
does not change after 50 iterations. The dropout is set to 0.25.

4. Evaluation Methodology

4.1. Dataset

The proposed method is evaluated on the PLAID dataset [30] that contains aggregate voltage
and current measurements. The PLAID aggregated measurement data include measurements of more
than one concurrently running appliances sampled at 30 kHz. It includes 1478 aggregated activations
and deactivations for 12 different appliances measured at one location. Since we are interested in
recognizing multiple active appliances, we only select activations and deactivations with at least one
running appliance in the background resulting in 1154 samples. The distribution of the number of
active appliances and appliances on the extracted 1154 activations is depicted in Figure 7.
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Figure 7. (a) Active appliances distributions. (b) Appliances distribution on the extracted 1154 activations.
The soldering iron has large number of activations because it has two start-up events.

4.2. Performance Metrics

We quantitatively evaluate the classification performance with label-based and instance-based
metrics. Label-based metrics work by evaluating each label separately and returning the average (micro
or macro) value across all appliances. In contrast, the instance-based metrics evaluate bi-partition
over all instances. To this end, two metrics, namely example-based F1 (F1-eb) and macro-averaged F1

(F1-macro) measures are used. Example-based F1 (F1-eb) is an instance-based metric that measures the
ratio of correctly predicted labels to the sum of the total true and predicted labels such that:

F1-eb =
∑M

i=1 2 · tp

∑M
i=1 yi + ∑M

i=1 ŷi
(9)

The F1-macro is derived from F1 score and measures the label-based F1 score averaged over all
labels and is defined as:

F1-macro =
1
M

M

∑
i=1

2 · tpi

2 · tpi + fpi + fpi
(10)

where tp is true positive, fp is false positive and fn is false negative. High F1-ma usually indicate high
performance on less frequent labels [45].

4.3. Experiment Description

To benchmark our approach, we adopt multi-label stratified 10-fold cross-validation with random
shuffle [46]. This evaluation approach provides stratified randomized folds for multi-label while
preserving the label’s percentage in each fold. We compare the performance of the proposed CNN
model against the commonly used multi-label k-nearest-neighbor (MLkNN) [47] and Binary relevance
k-nearest-neighbor (BRkNN) [48] model.

To evaluate the proposed activation current feature, we first establish a baseline in which the
V-I binary image is used as an appliance feature. The VI binary image of size w× w, is obtained by
meshing the V − I trajectory and assigning a binary value that denotes whether the trajectory traverses
it as described in [14]. This experiment setup helps us to answer an essential question on whether the
proposed approach is sufficient for recognizing multiple appliances from aggregated measurements.
We analyze this by altering the type input features and compare the obtained performance. To gain
more insight into the proposed approach, we further examine the individual appliance performance
and misclassification errors.

To analyze the computational complexity of the proposed approach, we also assess the training
and inference times as a function of the number of data samples. This was achieved by training the
MLkNN baseline and CNN-based multi-label classifier while varying the training and testing size.
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In each run, the model is trained on p samples of data for 100 iterations and tested on (1− p) samples
data where p ∈ [0.1, 0.9].

Finally, we compare the appliance classification results with related state-of-art methods. However,
we should emphasize that due to the difficulty in producing fair comparisons as a result of different
experimental settings (e.g., sampling frequency, measurements, learning strategy, dataset, and the
metrics) these comparisons are merely illustrative of the potential of the proposed method.

5. Results and Discussion

5.1. Comparison with Baseline

The results of the comparisons between the baselines and the proposed CNN multi-label learning
for the V-I binary image and activation current feature are depicted in Figure 8a.
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Figure 8. maF1 score performance comparison between the proposed CNN model and the two baselines
for different inputs features: (a) Comparison between voltage-current (V-I) binary image and current
activation features; (b) Comparison between the activation current based features.

From Figure 8a, we see that the proposed CNN multi-label learning performs better than the
baselines in both feature types. We also observe that compared to the current activation feature, the V-I
binary feature representation yields low maF1 scores in both the proposed CNN model and the two
baseline algorithms. We see a slight increase in maF1 score (from 0.826± 0.024 to 0.849± 0.024 for the
CNN model and from 0.779± 0.028 to 0.827± 0.021 for the MLkNN model) when activation current
is used as input features. This result suggests that features derived from activation current could be
useful in recognizing appliances from total measurements.

We, therefore, analyzed three additional features derived from the activation current, namely
decomposed current, current distance similarity matrix, and decomposed distance similarities.
The results are presented in Figure 8b.

As it can be observed, the three current-based features significantly improve the classification
performance in the CNN model, while achieving nearly the same performance on the two
baselines. For the CNN model, the decomposed current feature attains an average 9.4% maF1 score
(from 0.849± 0.024 to 0.931± 0.015) increase over the activation current feature. This result is in
line with the one obtained in [20], which suggested that decomposing the activation current into its
active components enhances the uniqueness of the V-I trajectory. We also see about 10 percentage
points increase in maF1 (from 0.849± 0.024 to 0.94± 0.015) for the decomposed distance similarities.
The decomposed current and current distance matrix features achieve comparable performance.
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This result indicates that the decomposed current features could help increase the performance of
appliance recognition in NILM.

Figure 9 presents the predicted multiple appliances from the CNN based classifier with different
feature representation. We see that compared to the activation current in Figure 9a and the V-I image
Figure 9c, the proposed Fryze’s current-decomposition in Figure 9b,d is capable of detecting all
multiple running appliances. This shows that the Fryze current decomposition-based feature alone is
sufficient for the identification of multiple running appliances.
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Figure 9. Prediction comparison for different feature representations with the proposed CNN multilabel
classifier. (a) Action current. (b) Decomposed current. (c) V-I image. (d) Distance matrix.

To gain insights on the performance of individual appliances, we further analyze the per-appliance
ebF1 score for the MLkNN and the proposed CNN multi-label classifier, as depicted in Figure 10.
The CNN model with decomposed current distance matrix feature obtains over 90% ebF1 score for
each appliance except for AC, ILB, and LaptopCharger. We also see that the MLkNN baseline with the
same decomposed current distance matrix feature obtains over 90% ebF1 score for only four appliances,
namely FridgeDefroster, CoffeeMaker, Vacuum, and CFL. In both cases, we observe low scores for V-I
binary features except for FridgeDefroster, CoffeeMaker, and Vacuum, which score above 90% ebF1.
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Figure 10. Per-appliance ebF1 score on PLAID dataset. AC = air conditioning, CFL = compact
fluorescent lamp, ILB = incandescent light bulb. (a) Multi-label k-nearest-neighbor (MLkNN) (b) CNN.

5.2. Error Analysis

We also analyze the miss-classification errors for the proposed CNN model. To this end,
we identified three types of errors, namely zero-error, one-to-one, and many-to-many errors.

The zero-type mistake happens when a model predicts no appliance is running while there is at
least one active appliance. It can be observed from Figure 11 that the number of zero-type mistakes is
very low for the three feature types with decomposed-current distance making no such type of error.
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Figure 11. (a) Distributions of type errors the model makes. (b) Number of correct predictions for
single, double and triple activations.

On the other hand, the one-to-one is the type of error that the model makes when there is only
one active appliance running. We see from Figure 11 that the V-I binary image makes 45 one-type
errors while the current based features reduce this to seven for the decomposed current, and six for
the decomposed current distance feature. The low error rate when one appliance is running can be
attributed to the high number of single activations, over 50%, as presented in Figure 7a. It further shows
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the effectiveness of the proposed CNN multi-label learning in recognizing individually operating
appliances, with over 98% accuracy, as shown in Figure 11b.

The many-to-many errors are confusions that a model makes when several appliances are active.
Since the PLAID dataset used in our experiment consists of up to three simultaneous active appliances,
we further categorized many-to-many errors into single, double, or complete-error. A single error occurs
when a model confuses only one appliance when two or three appliances are active, whereas in double
fault, the model confuses two appliances when three appliances are active. The complete-error is the
case when the model produces incorrect predictions for all the active appliances. It can be inferred
from Figure 11 that the proposed CNN multi-label model makes a higher number of double errors for
the three input feature types used. This is likely to be caused by the fewer numbers of samples with
more than two appliances running simultaneously at about 5.8%, as depicted in Figure 7a.

5.3. Complexity Analysis

The results for the complexity analysis between the baseline and the proposed CNN multi-label
learning are presented in Figure 12. As expected, since the proposed method is an eager learner (i.e.,
a model is created in the training phase), it takes significantly longer to train than the MLKNN baseline
(Figure 12a). In contrast, the proposed method has a much shorter inference time since the model
was already created in the training phase. Furthermore, from Figure 12b it can be observed that the
proposed method achieves better performance even with less training data, which is positive if one
considers that labeled data is scarce and often hard to acquire.
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Figure 12. (a) Distributions of type errors the model makes. (b) Number of correct predictions for
single, double and triple activations.

5.4. Comparison with State-of-the-Art Methods

Table 1 provides an overview of the results obtained in other related works. As it can be
observed, there are many differences that make a fair and objective comparison impossible to achieve.
For instance, while our approach uses current waveforms extracted from high-frequency power
measurements, the results presented in [26] were obtained on low-frequency data, and on a different
dataset. Yet, they also used the MLkNN multi-label classifier, achieving considerably lower results.
Moreover, our results cannot be directly compared with the ones presented in [49], as these were
obtained from a private dataset, besides the very different experimental settings including a different
performance metric. In [23,37], the F1 macro score for TCNN and FCNN DNN based multi-label
classifiers are given; however, they use UK-DALE dataset making the comparison irrelevant.

An almost direct comparison is only possible between our method and the results from [19] who
have used the same dataset and performance metric. Still, it should be stressed that the performance
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evaluation method was different since their work targets single-label classification. Yet, the results
obtained with our approach are superior by six percentage points.

In short, for a fair comparison, we would have to re-implement all these approaches, which
unfortunately is not always possible. Nevertheless, to make this task easier for other authors,
we open-sourced the code necessary to replicate our experiments.

Table 1. Results comparison.

Approach Learning
Strategy Model Dataset Sampling

Frequency Results (Metric)

De Baets et al. [19] single CNN PLAID [30] High 88.0% (F1 macro)
Faustine et al. [13] single CNN PLAID [30] High 97.77% (F1 macro)
Tabatabaei et al. [26] multi MLkNN REDD-House1 [50] Low 61.90% (F1 macro)
Lai et al. [49] multi SVM/GMM Private - 90.72% (Accuracy)
Yang et al. [23] multi FCNN UK-DALE-house 1 [51] Low 93.8% (F1 score)
Nalmpantis and Vrakas [37] multi TCNN UK-DALE-house 1 [51] Low 92.5% (F1 score)
Proposed approach multi CNN PLAID [30] High 94.0% (F1 score)

6. Conclusions and Future Work Directions

In this work, we have approached appliance recognition in NILM as a multi-label learning problem
which links multiple appliances to an observed aggregate current signal. We first show that features
derived from activation current alone could be useful in recognizing devices from total measurements.
We later apply Fryze’s power theory, which decomposes the current waveform into active and
non-active components. The decomposed current signal was then transformed into an image-like
representation using the Euclidean-distance-similarity function and fed into the CNN multi-label
classifier. Experimental evaluation on the PLAID aggregated dataset shows that the proposed approach
is very successful at recognizing multiple appliances from aggregated measurements with an overall
0.94 F-score.

We further show the effectiveness of the proposed CNN multi-label learning in recognizing
a single running appliance with over 98% accuracy. We will investigate the use of Fryze’s current
decomposition and distance similarity matrix for single-label appliance recognition in future iterations
of this work. Finally, we presented a detailed error analysis and identified three types of errors:
zero-error, one-to-one, and many-to-many errors.

At this point, we acknowledge that the performance of the proposed approach is not yet
satisfactory in detecting triple running appliances. A possible explanation for this issue is the
small number of training samples with more than two running appliances. In the future, we would
like to test our approaches against datasets with more training data. However, this may imply
the development of such a dataset since the currently available ones are still scarce concerning
high-frequency measurements [52,53].

Finally, it should be mentioned that the proposed method assumes that the appliance state
transition (power event) is known in advance. However, in practice, this information has to be
provided by an event detection algorithm (e.g., [54–56]). Therefore, future work should investigate
how to integrate the proposed approach in the event-based NILM pipeline. Specifically, we plan
to explore the use of the proposed Fryze current decomposition for event detection in multi-label
appliance recognition.
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