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ABSTRACT
This paper pursues the question of how seasons of the year a�ect
disaggregation performance in Non-Intrusive Load Monitoring. To
this end, we select the dishwasher, a common household appliance
that may exhibit usage cycles depending on the user. We utilize an
auto-correlation function to detect usage patterns of dishwashers
in each season. Then, we examine the dissimilarity across each
season with the help of the Keogh Lower Bound measure. Finally,
we conduct a disaggregation study using the REFIT dataset and
relate the outcome to the dissimilarity across seasons. Our �ndings
indicate that in cases where energy consumption shows similar-
ity throughout seasons, the performance of load disaggregation
approaches can be positively a�ected.

CCS CONCEPTS
• General and reference! Performance; Evaluation; Empir-
ical studies.
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1 INTRODUCTION
The continuous reduction of greenhouse gas (GHG) emissions is a
growing need for achieving a more sustainable worldwide energy
distribution. There have been several initiatives throughout the
years to discuss the impacts resulting from improper energy usage.
In the 2008 climate change act, one of the commitments of the UK
government was to achieve 80% reduction in GHG emissions by
2050, compared with a 1990 baseline [9].

Energy e�ciency of the domestic sector must improve to lower
emissions and mitigate the risks of global climate change [12]. It
is emphasized that electricity consumption of households depends
on a complex series of interlinked and interacting socio-economic,
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dwelling, and appliance-related factors. Hence, there can be high
consumption volatility among users. Furthermore, in [6], seasonal
variation is a visible feature in house occupancy levels, e.g., lower
consumption in evening hours for warmer months, as opposed to
the remaining colder months.

Seasonality e�ects are widely studied in the context of load
forecasting [11]. The results stress that without accounting for
seasonality, the quality of predictions is seriously compromised. To
the best of our knowledge, the e�ects of seasons on the performance
of NILM algorithms have received little attention by the community.
Instead, the most common method to evaluate NILM algorithms
consists of selecting test sets with varying sizes that have not been
used for training, independently of the season [15].

In this work, we study how season transitions a�ect the per-
formance of NILM algorithms. To this end, we propose two auto-
correlation based indicators to capture temporal correlations and
assess the similarity of appliance consumption time series. The
remainder of this paper is structured as follows: Section 2 presents
background and related work. Section 3 provides insights on the
appliance data used in our work followed by three case studies. Fi-
nally, we present conclusions, limitations, and an outlook on future
work in Section 4.

2 BACKGROUND AND RELATEDWORK
2.1 Correlation and Auto-Correlation
Statistical correlation summarizes the strength of the relationship
between two random variables. Pearson’s correlation coe�cient
[13] can be used to measure the linear association of two variables,
which is a number in [�1, 1], where values close to �1 indicate a
negative correlation, while values in the opposite direction indicate
a positive correlation. The zero value indicates no correlation at all.

In time series analysis, an important feature is the (potential)
serial correlation. For a time series ~C , the correlation coe�cient
between two values is called Auto-Correlation Function (ACF) [3],
given by:

Cor(~C ,~C�: ) =
⇠>E (~C ,~C�1)p

+0A (~C )+0A (~C�: )
, : = 1, 2, . . . (1)

where: is the time gap considered between observations. In general,
the correlation between values that are : time periods apart is
called lag-: correlation. In a stationary time series, the moments of
random variables are non-changing over time, thus the index C is
dropped and the ACF is written as function of lag :

d (:) = Cor(~C ,~C�: ), : = 1, 2, . . . (2)
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One of the approaches to estimate the ACF is by means of the
Pearson’s correlation coe�cient

d̃ (:) =
Õ=�:
B=1 (GB+: � Ḡ (:) ) (GB � Ḡ (1) )qÕ=

B=:+1 (GB � Ḡ (:) )2 ⇥
Õ=�:
C=1 (GC � Ḡ (1) )2

, : = 1, 2, . . .

(3)
where Ḡ (1) = 1

=�:
Õ=�:
8=1 G8 and Ḡ (:) =

Õ=
8=:+1 G8 . This measure also

gives insight on the amount of explained variability: the square of
the Pearson correlation coe�cient gives the percentage of variabil-
ity of GC+: that is explained by GC . The drawback of this approach is
that the number of data pairs decreases at higher lags, which leads
to less precise estimations as : increases. Alternatively, a plug-in
approach based on estimated auto-covariances can be used, and the
estimate for the :-th auto-correlation coe�cient terms turn out to
be

d̂ (:) =
Õ=�:
B=1 (GB+: � Ḡ) (GB � Ḡ)Õ=

C=1 (GC � Ḡ)2
, : = 1, 2, . . . (4)

The estimation of ACF from an observed time series assumes
that the underlying process is stationary. However, the formulae
given previously can still be applied to non-stationary series. The
ACF plots then usually exhibit some typical patterns. Therefore,
the time series is decomposed into trend, seasonality, cyclic and
residual components, which are taken into account while �nding
correlations on the data.

The trend is a long-term average tendency of the data to increase
(upward) or decrease (downward) over time, either linear or non-
linear. The ACF is generally large and positive for small lags with a
slow decay as the lag increases. With a di�erent nature, seasonal
variations (seasonality) operate in a regular and periodic manner
over a span of less than a year. It is present in periodically recorded
data, e.g., daily, weekly, or monthly. The ACF plots exhibit more
signi�cant spikes at multiples of the seasonal frequency. Cyclic vari-
ations operate over more than one year and the ACF peaks around
the average cycle length. The residual component (or remainder)
is a factor that causes purely random or irregular variation in the
variable under study. In this work, seasonality analysis is of special
interest.

2.2 ACF Applications to Load Disaggregation
Literature in ACF applications is not vast, and existing attempts are
mostly to gain additional insights in consumption data. For example,
in [8] and [7], ACF is used to detect periodicity and load patterns in
Hilbert transforms of pulse waveforms from energy consumption
data. It is emphasized that the properties of the integral transform
and the use of statistical tools, such as the ACF, provides valuable
information to the end-use disaggregation: level of demand and
duty cycles of appliances for a given household and speci�c season.

In [10], the temporal structure of power time series is analyzed
via �rst-order auto-correlation to compare energy consumption in
commercial and residential buildings. Among other results, it was
highlighted that commercial buildings have more evident seasonal
patterns than residential ones, which is related to people’s habits
and time-scheduled equipment.

3 MATERIALS AND METHODS
3.1 Appliance Consumption Data
We focus on the analysis of dishwasher consumption since it may
exhibit seasonal ACF patterns (e.g. daily orweekly usage) depending
on the user . For example, in [20], it is concluded that fully-loaded
modern dishwashers use less electricity, water, and detergent than
even the most e�cient hand-washers. Hence, it is expected that
more conscious householders will do full loads, resulting in seasonal
ACF patterns. Such a seasonal pattern contrasts with the fridge,
which exhibits a recurrent cycling pattern over time.

In the course of this work, we employ data of dishwasers pro-
vided by the REFIT dataset [16], which is composed of electrical
consumption measurements, both aggregate and appliance levels,
for 20 households in the UK. The original data are timestamped
and sampled at 8 second intervals.

To capture all four seasons of a year, the period in which the
experiments are performed is exactly one year - ranging from 2014-
06-21 to 2015-06-20. During this period, we identi�ed a dishwasher
in 15 of 20 households in REFIT. Houses 4, 8, 12, 16 and 18, do not
have a dishwasher. We divided the data according to the seasons in
the UK as follows: i) Summer: from 2014-06-21 to 2014-09-21; (ii)
Fall: from 2014-09-22 to 2014-12-20; (iii) Winter: from 2014-12-21
to 2015-03-19; (iv) Spring: from 2015-03-20 to 2015-06-20.

3.2 Seasonality Identi�cation with ACF
In this section, the ACF is used to unveil seasonality patterns in
consumption data of dishwashers. The data was down-sampled to
one sample per minute. At each activation, the dishwasher is used
for a considerable time span (in view of minutes). Therefore, this
granularity is su�cient to preserve usage patterns albeit working
with down-sampled versions of the original data.

A two-step approach was followed for seasonality identi�cation:
(1) ACF calculation, and (2) identi�cation of the most signi�cant
peaks. Concerning the �rst, ACFs are calculated for each season us-
ing the plot_acf function from Python’s package statsmodels1.
In order to capture household routines, which normally follow a
weekly basis, a di�erent ACF is calculated for each consecutive
two weeks of data. The second step is based on the concept of
topographic prominence in a signal, which measures the vertical
distance between the peak and its lowest contour line. The inspi-
ration for using this technique comes from real-world detection
of mountains [14]. The implementation in Python can be seen in
detail in [19].

3.2.1 Results and Discussion. The resulting ACFs and prominent
peaks were then analyzed for each household to �nd which ones
exhibit seasonal usage of the dishwasher. For illustration purposes,
Figure 1 shows the ACF plot for household 10 during the �rst two
weeks of summer. The prominent peaks occur approximately every
1440 lags, which indicates the dishwasher is used once a day (i.e.,
every 1440 minutes).

In contrast, for household 17, the ACF does not exhibit any
seasonal pattern as can be observed in Figure 2, where several
peaks represent irregular uses of the dishwasher.

1Python statsmodels, https://www.statsmodels.org/
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Figure 1: Autocorrelation function of the dishwasher in
household 10 for the �rst two weeks in summer.
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Figure 2: Autocorrelation function of the dishwasher in
household 17 for the �rst two weeks in summer.

The results obtained for the dishwashers in each household are
summarized in Table 1. It should be noted that some households
exhibit seasonal ACF pattern only for one season, while household
5 keeps that pattern for all seasons. On the other hand, the seasonal
ACF pattern was not noticed for households 1, 3, 11, 13, 14, 19, and
20. Also, only household 5 has a seasonal ACF in spring, which
may occur because most households have missing values for this
season. Ultimately, for about 85% of the cases the ACF pattern is
not seasonal, which means that in general the householders in this
study do not use the dishwasher according to a pattern, as initially
assumed.

Table 1: Seasonality results for the �rst two weeks of each
season. Seasonal patterns are identi�ed with "X".

Season
Households

1 2 3 5 6 7 9 10 11 13 14 15 17 19 20
Summer X X X X X
Fall X X X X X
Winter X X X X
Spring X

3.3 Seasons Comparison with ACF
In this section, we compare the dishwashers’ ACF in the transitions
between consecutive seasons. To this end, the similarity between

ACFs is assessed using the Keogh Lower Bound (LBK) [18], which
is a lower-bounding measure for Dynamic Time Warping (DTW).
LBK minimum bounds can be set up to check a lesser number of
alignments between the series and quickly determine candidates
for the set of nearest neighbours. Therefore it enables to reduce the
computational time and quadratic complexity inherent in DTW [5].
LBK function is de�ned as

!⌫ (&,⇠) =
=’
8=1

(28 �*8 )2� (28 > *8 ) + (28 � !8 )2� (28 < !8 ) (5)

where *8 =<0G (@8�A : @8+A ) and !8 =<8=(@8�A : @8+A ) are, respec-
tively, upper and lower bounds for time series & for reach A and
� (.) the indicator function.

Figure 3 exhibits the dishwasher similarity scores for the summer-
fall, fall-winter, and winter-spring season transitions, obtained by
comparing the last two weeks of a season and the �rst two weeks
of the next one.

1 2 3 5 6 7 9 10 11 13 14 15 17 19 20
Household

1
2
3
5
6
7
9

10
11
13
14
15
17
19
20

H
ou

se
ho

ld
Transition Summer-Fall

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
1 2 3 5 6 7 9 10 11 13 14 15 17 19 20

Household

1
2
3
5
6
7
9

10
11
13
14
15
17
19
20

H
ou

se
ho

ld

Transition Fall-Winter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 5 6 7 9 10 11 13 14 15 17 19 20
Household

1
2
3
5
6
7
9

10
11
13
14
15
17
19
20

H
ou

se
ho

ld

Transition Winter-Spring

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3: LBK scores of ACF comparison across seasons.

3.3.1 Results and Discussion. For this analysis, the households
were split into two groups according to the level of similarity among
the dishwashers. More precisely, dishwashers with a LBK score
greater than 2.5 are considered to have higher dissimilarity. The
obtained results are summarized in Table 2.

Table 2 seems to be the opposite of the previous table, with
60 out of the 75 cases reporting similarity across seasons. This
leads to the conclusion that the consumption does not seem to
change that much across seasons, even though there are no speci�c
seasonal ACF patterns. Also, although the ACF pattern is seasonal
for household 2 in both fall and winter, the ACFs are not similar
across those seasons (�gure 3).

3.4 Seasons and Disaggregation Performance
In this section, we present the results of a disaggregation experiment
of the dishwasher from the aggregate data. This was performed
to assess if the similarity of dishwashers across season transitions
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Table 2: LBK summarized results for each transition. "X" rep-
resents the households with higher dissimilarity among the
dishwashers.

Transition
Households

1 2 3 5 6 7 9 10 11 13 14 15 17 19 20
Summer-Fall X X X X X
Fall-Winter X X X X
Winter-Spring X X X X X X

a�ects the algorithm performance. Since the original data was not
necessarily sampled every 8 seconds, it was decided to down-sample
to 10 seconds for the disaggregation experiment.

3.4.1 Training and Test Data. For this experiment, two test sets
were considered from the aggregate data, eachwith two consecutive
weeks of data (T1 and T2). More precisely, T1 and T2 contain,
respectively, aggregate data from the last 2 weeks before season
change and the �rst 2 weeks of the new season. For each test set,
the same training set is used, each of which contains only aggregate
data from the �rst season (the whole season excluding the last 2
weeks). Table 3 summarizes the train and test sets for each season
transition.

Table 3: Train and test sets used in the disaggregation of dish-
washers.

Train Test 1 (T1) Test 2 (T2)
2014/06/21-2014/09/07 2014/09/08-2014/09/21 2014/09/22-2014/10/05
2014/09/22-2014/12/06 2014/12/07-2014/12/20 2014/12/21-2015/01/04
2014/12/21-2015/03/05 2015/03/06-2015/03/19 2015/03/20-2015/04/03

3.4.2 Disaggregation Algorithm and Performance Metric. The disag-
gregation algorithm used in this experiment is the Factorial Hidden
Markov Model (FHMM), which is available in NILMTK [2]. The
selected performance metric is the Mean Absolute Error normalized
by standard deviation (NMAE) [17].

3.4.3 Results and Discussion. To assess if similarity across season
transitions a�ects the algorithm performance, it is necessary to
compare the performance between the households that exhibit
similar ACFs and the ones that do not as presented in the previous
sub-section.

Looking at the results for both T1 and T2 (Figure 4 and Figure 5,
respectively), for transitions fall-winter (fw) and winter-spring (ws),
the performances in the presence of a seasonal pattern (highlighted
with _s in the �gure) appear to be better.

In contrast, in the transition summer-fall (sf), the distributions
are not conclusive. Yet, for this transition the performance is compa-
rable, independently of the similarity in the ACFs. This is especially
visible in T2 where the median value is the same. Ultimately, these
results suggest that the disaggregation performance is positively
a�ected in households with similar ACFs in the transitions across
seasons. Furthermore, the fact that the same behavior does not
occur in the transition from summer to fall indicates that other
factors are in�uencing the performance. In this particular case, the
performance is equally good independently of the similarity be-
tween ACFs, which may indicate that at some levels of complexity

the disaggregation will not vary signi�cantly. Still, in future work,
it would be interesting to explore this speci�c transition in more
detail.
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Figure 4: Comparison of performance between households
with similar ACF in the transitions between seasons for T1.
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Figure 5: Comparison of performance between households
with similar ACF in the transitions between seasons for T2.

4 CONCLUSIONS AND FUTUREWORK
In this work, we show how the ACF can be used to identify sea-
sonality and compare energy consumption patterns across seasons
for the dishwasher appliance in the REFIT dataset. Also, we pro-
vide a disaggregation experiment to assess to what extent similar
consumption among dishwashers a�ects NILM performance. One
limitation of this work is that the amount of data used is short to
enable fair comparisons. In fact, we would need at least two years
of data to assess if the results hold across seasons. A second limita-
tion is we have only considered one NILM algorithm. Nonetheless,
the results show that seasonality in dishwashers is not as com-
mon as initially expected. On the other hand, the consumption
patterns seem to be similar independently of the seasons, which
can potentially improve the performance of the NILM algorithms.

It is important to remark that these results are limited to one
country, thus futurework should explore data from di�erent regions.
Likewise, it is of interest to consider di�erent NILM algorithms and
other appliances, such as the washing machine. Finally, study and
compare other measures to assess seasonality and similarity of time
series, e.g. Partial Auto Correlation (PACF) [4] for the former and
Global Alignment Kernels (GAK) [1] for the latter.
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