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ABSTRACT
Over the years, an enormous amount of research has been ex-
ploring Deep Neural Networks (DNN), particularly Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
for estimating the energy consumption of appliances from a single
point source such as smart meters - Non-Intrusive Load Monitoring
(NILM). However, most of the existing DNNs models for NILM
use a single-task learning approach in which a neural network is
trained exclusively for each appliance. This strategy is computa-
tionally expensive and ignores the fact that multiple appliances
can be active simultaneously and dependencies between them. In
this work, we propose UNet-NILM for multi-task appliances’ state
detection and power estimation, applying a multi-label learning
strategy and multi-target quantile regression. The UNet-NILM is
a one-dimensional CNN based on the U-Net architecture initially
proposed for image segmentation. Empirical evaluation on the UK-
DALE dataset suggests promising performance against traditional
single-task learning.
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1 INTRODUCTION
The recent adoption of smart meters in emerging smart grids has
increased the interest in Non-Intrusive Load Monitoring (NILM).
NILM comprises computational methods that use aggregate power
data to infer the power consumption of appliances in buildings [7].

Recently, deep neural networks (DNN) approaches to solve the
NILM problem have moved to the spotlight [8, 9, 13, 15, 31]. Yet,
scholars have focused mainly on single-appliance/single-task learn-
ing strategies, where one neural network is trained for one partic-
ular appliance a time. The main drawback of such strategies lies
in ignoring the simultaneous activation of multiple appliances and
the dependencies between their usage [18]. Additionally, most ap-
proaches focus on single tasks where one neural network is trained
for either power estimation or appliance state detection. Further-
more, it should be noted that the main NILM tasks (appliance state
detection and power estimation) depend on one another since the
appliance stats are derived from their power profile.

Thus in this work, we propose UNet-NILM, a one-dimensional
CNN based on the U-Net architecture [24] for multi-task-multi-
appliances’ state detection and power estimation.We leveragemulti-
appliances-multi-task learning strategy to improve generalization
of DNN for NILM by sharing the feature space of the two dependent
tasks [4, 32].

Multi-task learning is an approach to inductive transfer that
improves generalization by using the domain information present
in the training feature space of dependent tasks [4, 5, 11, 22, 32]. It
learns several tasks in parallel while applying a shared representa-
tion. Consequently, the feature space learned for each task is used to
improve the performance of other tasks. This learning paradigm has
been applied successfully across several machine learning applica-
tions such as natural language processing [22], speech recognition
[5], and computer vision [11].

2 PROPOSED METHOD
The proposed approach aims to identify the states 𝑠𝑚 (𝑡) of an
appliance𝑚 and estimate its power consumption 𝑦𝑚 (𝑡) from the
total power consumption 𝑥𝑡 for𝑚 = 1, 2, . . . 𝑀 , where𝑀 indicates
the number of appliances. We refer to this as a multi-task-multi-
appliances NILM problem, where given an observed aggregate power
signal, unobserved states s𝑡 of electrical appliances are detected and
the corresponding power consumption y𝑡 estimated. The aggregate
power consumption 𝑥𝑡 at time 𝑡 can be expressed by Equation 1:
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𝑥 (𝑡) =
𝑀∑

𝑚=1

𝑦𝑚 (𝑡) · 𝑠𝑚 (𝑡) + 𝜖 (𝑡) (1)

where 𝜖𝑡 represents the contributions from appliances not ac-
counted for and measurement’s noise [14]. Specifically, the problem
is formulated as follows:

Let X ∈ R𝑇×𝑑 = {𝑥1 . . . 𝑥𝑇 } denote a set of input features
derived from the aggregate power consumption of 𝑀 appliances
and Y ∈ R𝑇×𝑀 indicates the power signals of the associated ap-
pliances, where each appliance has 𝑘 states denoted as s𝑚 (𝑡) =

{𝑠𝑚 (𝑡)1, . . . 𝑠𝑚 (𝑡)𝑘 } such that 𝑠𝑚 (𝑡)𝑘 ∈ {0, 1}. The matrix S ∈
R𝑇×𝑀 indicates the associated multi-label states for the M ap-
pliances and Y ∈ R𝑇×𝑀 is the corresponding power consump-
tions. Given 𝐷 = {x(𝑡), s(𝑡) |𝑡 = 1, . . . ,𝑇 } datasets, the goal is
to learn a multi-task model that predicts the state vector s(𝑡) =

{𝑠𝑚 (𝑡), . . . 𝑠𝑀 (𝑇 )} and power signal vector y(𝑡) = {𝑦𝑚 (𝑡), . . . 𝑦𝑀 (𝑇 )}
from the input aggregate power feature vector x𝑡 .

2.1 Multi-target Quantile Regression for Power
Estimation

Despite the success of DNN methods for power estimation in NILM,
they are based on single-target regression, which creates a sin-
gle model for each target, disregarding the possible inter-target
correlation [31]. Multi-target regression, also called multi-output
regression, is an alternative approach that aims to estimate the
power of multiple appliances based on a shared set of feature space
[1]. The joint modeling of multiple appliances allows exploiting the
statistical correlation among appliances, which has been shown to
be beneficial compared to modeling each appliance independently
[26]. Therefore, in this work we propose multi-target quantile re-
gression for power estimation.

Quantile regression aims to estimate either the conditional me-
dian or other quantiles of the target variable𝑦 conditioned on an ob-
served feature 𝑥 . The conditional distribution of 𝑦 given 𝑋 = 𝑥 can
be expressed by a cumulative distribution 𝐹 (𝑦 |𝑋 = 𝑥) : R→ [0, 1].
For a continuous and strictly monotonically increasing cumula-
tive distribution 𝐹 (𝑦 |𝑋 = 𝑥) the quantile function 𝑞 (𝜏) of the ran-
dom variable 𝑦 is simply the inverse of cumulative distribution:
𝑞 (𝜏) = 𝐹−1 (𝜏) for all quantile levels 𝜏 [10, 23]. As a consequence the
approximate of the entire conditional distribution of the target vari-
able 𝑦 is given as 𝑦 (𝜏) = 𝐹−1 (𝜏 |x = 𝑥) [23]. Thus a non-parametric
probabilistic density estimate 𝑓 (𝑦) can be obtained by gathering a
set of 𝑁𝜏 quantile estimates such that

𝑓 (𝑦) = {𝑦 (𝜏𝑛) , 𝑛 = 1, . . . 𝑁𝜏 | 𝜏 ∈ (0, 1)} (2)
Learning is accomplished by minimizing the pinball loss defined
by Equation 3, where 𝑟 = (𝑦 − 𝑦) denotes the residual power.

𝜌𝜏 (𝑟 ) =
{
(𝜏 − 1) · 𝑟 if 𝑟 ≥ 0

𝜏 · 𝑟 otherwise
(3)

The DNN for multi-target quantile regression can be trained by
minimizing the objective function given by Equation 4:

L (𝜌𝜏 ) (ŷ
𝜏 , y) = 1

𝑇𝑀

𝑇∑
𝑡=1

𝑁𝜏∑
𝑛=1

𝑀∑
𝑚=1

𝜌𝜏𝑛 (𝑦𝑚 (𝑡)𝜏𝑛 − 𝑦𝑚 (𝑡)) (4)

The use of quantile regression provide uncertainty estimation
almost for free. Uncertainity estimation can play an essential role
in assessing how much to trust predictions produced by the DNN
model [33]. Furthermore, quantifying predictive uncertainty is cru-
cial in determining how much to trust the DNN model’s prediction
[33], resulting in an accurate, reliable, and interpretable machine
learning system [30].

2.2 Multi-label Learning for State Estimation
Multi-label learning is a machine learning technique that aims at
predicting one or more labels for each input instance [6, 31]. Several
studies have demonstrated that multi-label learning represents a
viable alternative to conventional NILM approaches [2, 3, 6, 17, 18,
20, 27]. For instance, the work by [2], investigated the possibility
of applying a temporal multi-label classification approach in NILM
where a novel set of meta-features was proposed. In [27] an ex-
tensive survey for the multi-label classification and the multi-label
meta-classification framework is presented. Recent studies have ex-
plored deep neural networks for multi-label appliance recognition
in NILM [19, 29], yet these approaches rely on single-task learning
strategy.

A common approach that extends DNNs to multi-label classifi-
cation uses one DNN to learn the joint probability of multiple label
conditioned on the input features. The final predicted multi-label
is obtained by applying a sigmoid activation function [29]. To this
end, an additional threshold mechanism is required to transform
the sigmoid probabilities to multi-label outputs.

In contrast, we propose DNN multi-label learning that uses soft-
max to implicitly capture the relations between multiple states and
avoid th need for the thresholding mechanism as demonstrated in
[6]. The cross-entropy between the predicted softmax distribution
and the state of each appliance is thus used to learn the model
parameters such that:

L𝐶𝐸 (ŝ, s) = − 1

𝑇𝑀

𝑇∑
𝑡=1

𝑀∑
𝑚=1

𝑠𝑚 (𝑡) · log exp(𝑠𝑚 (𝑡))∑2
𝑘
exp(𝑠𝑚 (𝑡) 𝑗 )

(5)

2.3 UNet-NILM for Multi-Task NILM
The UNet-NILM is a one-dimensional CNN architecture consisting
of downsampling blocks, upsampling blocks, and an output layer.
The downsampling and upsampling blocks use the U-Net’s funda-
mental concepts to map the input sequence x𝑤 to the feature map
sequences z𝑚 on a freely chosen temporal scale [24]. It achieves
this by computing an increasing number of higher-level features on
more granular time scales using downsampling (1D convolution)
blocks. The higher-level features are combined with the earlier
computed local, high-resolution features using upsampling (1D
transposed convolution) blocks, producing multi-scale features to
make predictions.

The output layer consists of an 𝑁 -stages 1D CNN which cap-
ture non-temporal dependencies across the feature map sequences
z𝑚 and produces latent feature maps z𝑐 that is shared among the
multiple tasks. The N−𝑠𝑡𝑎𝑔𝑒𝑠 1D CNN layers are followed by three
Multilayer perceptron (MLP) layers with hidden sizes of 𝑁ℎ , 2 ×𝑀

and 𝑁𝜏 ×𝑀 . The first MLP layer receives the latent feature maps
z𝑐 to produce a lower dimension output feature map z𝑜 . The final
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Figure 1: Architecture of UNet-NiLM for multi-task NILM.

predicted multi-label states ŝ𝑡 and power signal ŷ𝑡 is obtained as
follows:

ŝ𝑡 = softmax(MLP𝜃𝑠 (z𝑜 )) (6)
ŷ𝑡 = MLP𝜃𝑝 (z𝑜 ) (7)

It can be observed that the appliance state detection and power-
estimation task share the feature-space z𝑜 , while keeping task-
specific output layers. The sharing of feature-space greatly reduces
the risk of over-fitting while introducing an inductive bias.

The proposed approach is trained using a sliding window ap-
proach where the input to the model is a sequence of aggregate
measurements x̄𝐿 with window size 𝐿 such that x̄𝐿 = {𝑥 (𝑡 − 𝐿 +
1), 𝑥 (𝑡 − 𝐿 + 2), . . . 𝑥 (𝑡)}. The DNN network learns to maps the
sequence of observed inputs x̄𝐿 to the corresponding targets’ states
𝑠 (𝑡) and power consumption𝑦 (𝑡). Through the experiment, we find
that the window size of 100 gives optimum results and provides
near real-time disaggregation. To learn the model parameters, a
standard back-propagation is used to optimize the two objective
functions:

L𝑇 = L𝐶𝐸 (ŝ, s) + L (𝜌𝜏 ) (ŷ
𝜏 , y) (8)

The following values of 𝜏 were used throughout the experiment
[2.5%, 10%, 50%, 90%, 97.5%]. Training is done for 50 iterations using
the Adam optimizer with an initial learning rate of 𝛼 = 0.001,
𝛽 = (0.9, 0.98), and a batch size of 128. A factor of 0.1 reduces
the learning rate once the learning stagnates for 5 consecutive
iterations following ReduceLROnPlateu scheduler.

2.4 Appliance State Profile
We model each appliance as a binary-state machine (𝑘 = 2): on-
state whenever it is consuming power and off -state otherwise. To
generate appliance state 𝑠𝑚 (𝑡) from the appliance power profile,
a sequence to quantile sliding window (seq2quantile) approach is
used in contrast to the slope algorithm approach used in previous

works [17, 18]. Using seq2quantile, we first generate a sequence
𝑦𝑚 (𝑡 : 𝑡 + 𝑤𝑚) from appliance power profile 𝑦 and compute its
quantile of 𝑦𝜏𝑚 = 𝑄𝜏 (𝑦𝑚 (𝑡 : 𝑡 +𝑤𝑚)) where𝑤𝑚 ∝ 𝑇𝑜𝑛

𝑇𝑠
is the win-

dow size for each appliance, 𝑇𝑜𝑛 is the mean ON-duration, 𝑇𝑠 is the
sampling rate and 𝜏 ∈ (0, 1). The 𝑄0.5 (𝑦𝑚 (𝑡 : 𝑡 +𝑤𝑚)) quantile
implies that 50% of 𝑦𝑚 (𝑡 : 𝑡 +𝑤𝑚) has values greater or equal to
𝑦𝜏=0.5𝑚 . The quantile operation acts as a filter by removing noise
which may add negative influence on state generation as illustrated
in fig. 2. Given the appliance quantile 𝑦𝜏𝑚 and its on-power thresh-
old 𝑝𝑜𝑛𝑚 , the appliance is assumed to be in the on-state if 𝑦𝜏𝑚 ≥ 𝑝𝑜𝑛𝑚
and in the off -state otherwise.

Figure 2: Example showing the process of generating appli-
ance state profiles.

3 EVALUATION METHODOLOGY
To evaluate our method, we first implement a baseline model (1D-
CNN) based on the CNN architecture presented in [6] to compare
the performance of the proposed UNet-NILM. It consists of a four-
stage CNN layer each with 16, 32, 64, and 128 feature maps, 2 × 2
strides. The first two CNN layers use a 5×5 filter size, while the last
two layers use a 3 × 3 filter size. The four CNN layers are followed
by a batch normalization layer and the PReLU activation function.
The last CNN layer is followed by an adaptive average pooling layer
with an output size of 16 × 16 and three MLP layers. The last two
MLP layers are used to estimate the appliance’s states and their
consumption.

3.1 Dataset and Performance Metrics
The proposed method is evaluated on a UKDALE [12] dataset. The
UKDALE dataset contains aggregate power consumption readings
at 1Hz resolution and sub-metered power consumption at 1/6Hz
resolution collected from five residential buildings in the UK. For
this experiment, we used data from house one from January to
March 2015. The following subset of appliances was selected for
disaggregation; kettle (KT), fridge (FRZ), dishwasher (DW), wash-
ing machine (WM), and microwave (MW). Due to the high noise to
signal ratio and some inconsistencies on the UKDALE’s aggregated
measurements the following data pre-processing were performed:
1) data were resampled to 6 seconds, 2) removed the missing values,
and 3) constructed artificial aggregate consumption by taking the
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Table 1: Experimental results in the UK-DALE dataset.

EAC MAE NDE exb − F1

Appliance 1D-CNN UNet-NILM 1D-CNN UNet-NILM 1D-CNN UNet-NILM 1D-CNN UNet-NILM
KT 0.589 ± 0.003 0.677 ± 0.017 20.390 ± 0.169 16.003 ± 0.824 0.674 ± 0.010 0.429 ± 0.039 0.944 0.956
FRZ 0.923 ± 0.000 0.937 ± 0.000 18.583 ± 0.006 15.124 ± 0.014 0.073 ± 0.000 0.072 ± 0.000 0.964 0.962
DW 0.875 ± 0.000 0.914 ± 0.000 9.884 ± 0.012 6.764 ± 0.012 0.126 ± 0.000 0.080 ± 0.000 0.913 0.909
WM 0.875 ± 0.000 0.909 ± 0.000 15.758 ± 0.009 11.506 ± 0.006 0.111 ± 0.000 0.062 ± 0.000 0.954 0.963
MW 0.630 ± 0.002 0.753 ± 0.003 9.690 ± 0.055 6.475 ± 0.072 0.656 ± 0.007 0.334 ± 0.005 0.907 0.916

Average 0.778 ± 0.003 0.838 ± 0.004 14.86 ± 0.050 11.174 ± 0.186 0.328 ± 0.003 0.195 ± 0.009 0.937 0.941

summation of selected appliances plus additional appliance (Tele-
vision in this setting). We then applied quantile filter 𝑄𝑤𝜏

𝜏 with
𝜏 = 0.5 and𝑤𝜏 = 10 presented in section 2.4 to smooth the signal.
After that, z-score normalization, which normalizes the input data
by using the mean and standard deviation, was applied.

We quantitatively evaluate the performance of the UNet-NILM
model with both regression and classification metrics. To assess the
performance of the regression task, we adopt three standard metrics
used in NILM, namely the mean absolute error (MAE), estimated
accuracy (EAC) and normalized disaggregation error (NDE) [21].
The MAE quantifies the error in predicted power at every time
point such that MAE = 1

𝑇𝑀

∑𝑇
𝑖=1

∑𝑀
𝑚=1 |𝑦𝑚 (𝑡) − 𝑦𝑚 (𝑡) | wheres

the EAC metric gives the total estimated accuracy [9] defined as
EAC = 1−

∑𝑇
𝑖=1

∑𝑀
𝑚=1 |𝑦𝑚 (𝑡 )−𝑦𝑚 (𝑡 ) |

2
∑𝑇

𝑚=1

∑𝑀
𝑚=1 𝑦𝑚 (𝑡 ) . The NDE metric measures the

normalized error of the squared difference between the prediction
and the ground truth defined as NDE =

∑𝑇
𝑖=1

∑𝑀
𝑚=1 (𝑦𝑚 (𝑡 )−𝑦𝑚 (𝑡 ))2∑𝑇
𝑖=1

∑𝑀
𝑚=1 𝑦𝑚 (𝑡 )2

To quantify the multi-label classification performance, we use
label-based and instance-based metrics. Label-based metrics work
by evaluating each label separately and returning the average (micro
or macro) value across all appliances. In contrast, the instance-based
metrics evaluate bi-partition over all instances. To this end, two
metrics, namely example-based 𝐹1 (𝐹1-eb) and macro-averaged
𝐹1 (𝐹1-macro) measures are used. Example-based 𝐹1 (𝐹1-eb) is an
instance-based metric that measures the ratio of correctly predicted
labels to the sum of the total true and predicted labels such that:
𝐹1-eb =

∑𝑀
𝑖=1 2·𝑡𝑝∑𝑀

𝑖=1 𝑦𝑖+
∑𝑀

𝑖=1 𝑦𝑖
The 𝐹1-macro is derived from 𝐹1 score and

measures the label-based 𝐹1 score averaged over all labels and
is defined as: 𝐹1-macro = 1

𝑀

∑𝑀
𝑖=1

2·𝑡𝑝𝑖
2·𝑡𝑝𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖 where 𝑡𝑝 is true

positive, 𝑓𝑝 is false positive and 𝑓𝑛 is false negative. High 𝐹1-ma
usually indicate high performance on less frequent labels [16].

4 RESULTS
Table 1 summarizes the outcomes of our experiments for both
UNet-NILM and the CNN baseline. The table includes results for
four metrics that were calculated for each appliance separately.
The values reported consist of the predicted value of the target
appliance consumption and the estimated uncertainty in the case
of the regression metrics.

Concerning themulti-label classification, However, the F1-measure
shows a slight improvement in detecting ON/OFF state for the UNet-
NILM in all appliances included in our experiments. This result is
also supported with the 𝐹1-eb metric and 𝐹1-macro.

The 𝐹1-macro highlights the superiority of UNet-NILM with
values of 0.941 and 0.93 for UNet-NILM and the baseline CNN,
respectively.

The three regression metrics considered in our experiments also
support the findings revealed by the classification metrics. Accord-
ing to the table, the three metrics show that UNet-NILM has better
performance for all the appliances with reasonable confidence. The
UNet-NILM reduces the MAE by 26.35% on average for each appli-
ance compared to the baseline CNN. We argue that it is mainly due
to the downsampling/upsampling blocks used to learn the feature
maps’ representation based on the sequences.

The values of the uncertainty highlight the strength of the UNet-
NILM and stress the precision of the obtained results. The confi-
dence of our model makes it a very competitive choice for several
applications. Specifically, in emerging solutions for Ambient And
Assisted Living approaches based on NILM [25] that aim to provide
a level of security and independence for the elderly living alone.

5 CONCLUSIONS
In this paper, we propose UNet-NILM, a DNNbasedmodel, formulti-
task NILM that provides both ON/OFF states of multiple running
appliances and their corresponding power consumption. Experi-
mental evaluation on the UK-DALE dataset shows good disaggre-
gation performance for different appliances with hight confidence.
Overall, the UNet-NILM can accurately capture the dependencies
between the appliance’s usage, efficiently detect states for multiple
running appliances and estimate their corresponding power con-
sumption. Compared to existing DNNs approaches for NILM, the
advantage of the proposed approach is its ability to provide both
appliance states and power consumption values and estimate the
prediction’s uncertainty.

At this point, we acknowledge that the employed benchmarking
approaches have room for improvement. Therefore, future work
should explore the model evaluation with a larger number of appli-
ances and its comparison with more advanced NILM benchmarks
such as state-of-the-art single-task DNN. Finally, it should be men-
tioned that the proposed method considered only quantile regres-
sion for uncertainty quantification. However, other approaches,
such as Monte Carlo dropout (MCD) [28] and Batch normaliza-
tion [28] have been extensively used to estimate the uncertainty of
DNNx, which should be investigated in future work.
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