
978-3-901882-99-9 c©2017 IFIP

Developing and Evaluating a Probabilistic Event
Detector for Non-Intrusive Load Monitoring

Lucas Pereira
Madeira-ITI / LARSYS

Funchal, Portugal
lucas.pereira@m-iti.org

Abstract—In this paper we present and evaluate probabilistic
event detection algorithm for Non-Intrusive Load Monitoring.
Like the other probabilistic event detectors, this algorithm
also calculates the likelihood of a power event happening at
each sample of the power signal. However, unlike the previous
algorithms that threshold or employ voting schemes on the event
likelihood, this algorithm employs a maxima/minima (i.e., the
extrema) locator algorithm to identify potential power events.
The proposed algorithm was evaluated against four public
datasets, and its performance was compared to that of other
four alternative solutions. The obtained results show that this
new algorithm is competitive with the other alternatives in the
four datasets. Furthermore, the results also suggest that using
an extrema locator instead of a voting scheme, increases the
performance of one of the state-of-the art algorithms.

Index Terms—NILM, event-based, event detection, algorithm,
benchmark

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) [1], or more gen-
erally single point energy disaggregation, is a promising
approach to provide detailed information about the energy
consumption of the individual appliances that co-exist in a
building’s electrical circuit.

To date, NILM research is formally categorized according
to two different approaches: i) event-based approaches, which
consist of keeping track of every appliance state transition
(e.g. TV turning ON or OFF) by means of event detection and
classification, assuming that the system was previously trained
[2], [3] and ii) event-less approaches, where no previous
knowledge of the existing appliances is assumed and the
load disaggregation is performed by means of techniques like
Hidden Markov Models [4], [5].

In this paper we focus on the event-based approaches, more
particularly in the event detection step. Extensive reviews of
the existing approaches for solving the NILM problem using
both approaches can be found in [6], [7].

The base assumption of event-based NILM algorithms is
that every change in the total power consumption of a building
happens as a response to an electric device changing its state,
e.g. a hair dryer going from LOW to HIGH. The approach
consists of applying signal processing and machine-learning
techniques to measurements in the vicinity of those power
changes, hence the crucial importance of the event detection
step.

Here we present and thoroughly evaluate a new event
detection algorithm. The remaining of this paper is organized
as follows: first, we provide a literature review on the state of
the art in event detection. Second, we propose a new event de-
tection algorithm, and describe its main characteristics. Third,
we describe the evaluation methodology that will be followed
to assess and benchmark the performance of the proposed
algorithm. Then, we present and discuss the event detection
and performance evaluation results, before we concluded and
outline future work.

II. EVENT DETECTION ALGORITHMS

Event detection is the process of identifying the relevant
changes (i.e., that represent appliances changing their state of
operation) in the aggregate consumption data. According to the
literature in this topic, the different approaches are grouped
in three categories [8]: i) expert heuristics; ii) probabilistic
models; and iii) matched filters. Next we briefly survey the
different proposed approaches.

A. Expert Heuristics

Algorithms under the expert heuristic category are probably
the least complex, and follow the basic principle of scanning
the time series data looking for changes that are above a certain
threshold, as defined by Hart is his seminal work [1].

For example, in [9] the power signal is first filtered to
minimize the presence of noise and reduce the chance of false
positives. On a second step, the power events are detected
by means of computing the absolute differences between two
consecutive samples and selecting the indexes where this
difference is above a pre-defined threshold. In [10] a similar
approach is proposed, yet instead of computing the absolute
differences between two consecutive samples, the differences
are calculated between the current sample and the sample x
seconds before. Moreover, in order to help reduce the number
of false positives, an index with absolute value above the pre-
defined threshold is only considered a power event if no power
event was detected in the last y seconds.

B. Probabilistic Models

Another approach to event detection is by means of prob-
abilistic methods. In this category of detectors, the event
detection occurs in two steps, as described below:



In the first step, it is necessary to calculate the chance
of an event occurring at each sample of the power signal.
This signal is normally referred to as the detection statistic,
and is computed by applying either statistical tests (e.g.,
Generalized Likelihood Ratio (GLR) [11], Goodness-of-Fit
(GOF) [12], CUmulative SUM (CUSUM) [13]) or other math-
ematical functions (e.g., Kernel Fisher Discriminant Analysis
(KFDA) [14]), to the power measurements by means of sliding
windows.

In the second step the power events are extracted from the
resulting detection statistic signal. This is normally done via
thresholding, i.e., whenever the detection statistic is above a
certain threshold a power event is flagged in the power sample
that corresponds to that index [11], [12]. Nevertheless, for the
particular case of NILM, more robust strategies have been
designed. For instance, in [2] the selection of the power events
is done by applying a voting algorithm to the detection statistic
signal.

C. Match Filters

In this category of algorithms, power events are detected
by correlating a known, or template signal with an unknown
signal to detected the presence of the former signal in the
later. In other words, match filter event detectors work by
trying to find known appliance transients (i.e., templates) in
the aggregated consumption signal (i.e., unknown signal) by
means of filtering techniques.

To the best of our knowledge, this was first attempted in
the NILM domain in [15] and [16] where the authors propose
an event detector that attempts to match segments of start-
up transients (obtained from training) to the aggregated signal
using two transversal filters in sequence. The first filter is used
to find the transient shapes in the aggregate signal, and the
second filter is used to enforce that the matches correspond to
actual transients and not some fortuitous noise [16].

As of today, the match filters category also incorporates
those detectors that use filters to transform the power mea-
surements into signals that emphasize potential power events
while depreciating the steady stage regions, similarly to what
is done in the probabilistic models category. For example, in
[17] the authors apply a Hilbert transform to the instantaneous
current, sampled at 20 kHz. This is followed by a combination
of average and derivation filters on the transformed signal such
that only the transitions of interest (i.e., power events) are
represented.

Another example of event detection based in filter matching
is the work of Baets et al. [18] that apply Cepstrum analysis to
the power signal, computed at 60 Hz. The resulting signal is
then thresholded such that only the positions where the signal
is above a certain value are considered power events.

In this paper we propose the Log Likelihood Ratio Detector
with Maxima (LLD-Max) event detection algorithm that as the
name suggests falls in the probabilistic category. The LLD-
Max algorithm is thoroughly described in the next section.

III. LOG LIKELIHOOD DETECTOR WITH MAXIMA

The event detector that we are proposing is inspired in the
Log Likelihood Ratio test, that was already used in [11] and
[2] to calculate the likelihood of a power event occurring.

However, unlike these two algorithms, that either threshold
([11]) or apply voting schema ([2]) to the event likelihood
signal to identify power events, the LLD-Max employs a
maxima / minima (i.e., the extrema) locator algorithm on the
detection statistics output in order to identify potential power
events. In other words, for each extremum that is found in the
detection statistics, a possible power event is signaled in that
position.

Our implementation of this event detector consists of two
different algorithms. The first, to which we refer to as Detec-
tion Statistic, is used to calculate the power event likelihood.
The second, referred to as Detection Activation, is used to
extract the power events from the signal generated by the
previous algorithm. Next we describe the two algorithms.

A. Detection Statistics

The detection statistics algorithm works with one sliding
window (detection statistics window - dsw) that is used to
calculate the likelihood of a change of mean happening at a
given sample. The dsw is composed of two separate windows,
a pre-event (w0) and a post-event (w1) window, and for each
sample x in the power metric P the detection statistic ds[x]
is given by equation 1.

ds(x) =
µ1 − µ0

σ2
×
∣∣∣∣P (x)− µ0 + µ1

2

∣∣∣∣ (1)

Where µ0 and µ1 are the mean of the pre- and post-event
windows respectively, σ2 is the variance of the detection
window, and P (x) is the power of the xth sample.

Lastly, the detection statistics signal, ds(x), is adjusted by
forcing it to be equal to zero when the absolute difference
between µ0 and µ1 is below a pre-defined threshold Pthr.
Ultimately, the likelihood of a power event occurring at sample
x is given by the equation 2.

ds(x) =

{
ds(x), if |µ1 − µ0| > Pthr

0, otherwise
(2)

B. Detection Activation

In theory, the detection activation of the LLD-Max algo-
rithm would work by sliding an extrema locator window (elw)
across the values of the detection statistic ds(x) looking for
the local maxima and minima. However, to minimize the
computational costs, we slide the elw across the absolute
values of ds(x), looking only for the local maxima.

The detection activation algorithm consists of one single
parameter, the maxima precision Mpre. This parameter is used
to make the process of finding the maximum values more
stable, and is what defines the size of the extrema locator
window (elw). More concretely, the length of the elw is equal
to twice the maxima precision plus one (2 ×Mpre + 1). For
each shift of the window, the sample in the middle will be



Fig. 1: Illustration of the LLD-Max event detection process. Active power and detection statistics (top), detection statistics and
local maxima (center), active power and power events (bottom).

signaled as a power event if its absolute value is larger than
the absolute value of all the Mpre samples to its left and right.
The Mpre must be greater of equal to 1.

Overall, the parameter space of this algorithm consists of
four adjustable parameters: a pre-event window length (w0), a
post-event window length (w1), a power threshold (Pthr), and
the maxima precision Mpre. The parameter space of LLD-
Max is summarized in table I. It is important to remark that
the Mpre parameter does not allow the detection of power
events when these are separated by less than Mpre samples.

In figure 1 we show an illustration of the LLD-Max event
detection process. The different parameters were set to the
following values: Pthr = 100 W, wpre = wpost = 50 samples,
and Mpre = 50 samples.

First, the power detection statistics (ds) is calculated for
each power sample. The resulting detection statistics for each

TABLE I: Parameter space for the LLD-Max detector

Parameter Symbol
Pre-event window size w0

Post-event window size w1

Power Threshold Pthr

Maxima Precision Mpre

sample is depicted on the top of figure 1 (scaled by a factor
of 103 for better visualization). Next, the extrema locator
algorithm, with a tolerance of 50 samples, is applied to the
detection statistic signal. In this example, two local maxima
and one local minimum are found, as it can be observed from
the representation in the center of figure 1. Finally, in the third
step, the extrema indexes in the detection statistic signal are
mapped in the power signal, and the respective power events
are extracted as shown in the bottom of figure 1.

IV. PERFORMANCE EVALUATION METHODOLOGY

In this section we describe the methodology that will be
followed to assess and benchmark the performance of the
LLD-Max algorithm. We start by presenting the datasets, the
benchmark algorithms and the performance metrics that will
be used in this evaluation. We then describe the parameter
sweep that was executed in each of the algorithm to gather
the event detection data used in this experiment. Finally, we
describe the process of calculating the different performance
metrics.

A. Datasets

In this work we use data from two public NILM datasets,
namely the BLUED [19] and UK-DALE [20]. More con-
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Fig. 2: Summary of datasets: (a): absolute active power change, and (b) seconds between power events.

cretely, use use the Phases A and B from BLUED, and one
week of data from UK-DALE’s Houses 1 and 2, that are both
single-phase.

BLUED was labeled by the dataset creators, and the details
can be found in the respective publications. As for the UK-
DALE, we had to label the data ourselves. To this end, we
followed the semi-automatic labelling approach presented in
[21]. To state more concretely, our approach was three-fold: i)
we applied an expert heuristic detector to the daily aggregate
data (at 50Hz), ii) we manually removed the false positives,
and iii) we manually added the missing labels.

Finally, it is important to remark that we are not keeping
track of which appliance triggered each power change, and
that, for the sake of consistency with BLUED, we only
considered the power events with a minimum absolute power
change of 30 Watts.

Figure 2 summarizes the four datasets in terms of absolute
power change (a), and number of seconds between power
events (b). As it can be observed, the minimum absolute power
change is the same in each dataset. As for the number of
seconds between power events, it is possible to see that in
BLUED A, the power events are much more sparse than in
the others. Ultimately, these two quantities are very related
with the event detection performance, as we will see in the
remaining of this paper.

B. Benchmark Algorithms

In this work we will benchmark our algorithm against the
heuristic detector presented in Meehan 2014, [10] and the LLR
probabilistic detector presented in [2].

TABLE II: Event detection algorithms used in this work

Algorithm Symbol
Expert Heuristic Detector EH
Log Likelihood Ratio with Voting LLR-Vote
Log Likelihood Ratio with Maxima LLR-Max
Log Likelihood Detector with Maxima LLD-Max
Log Likelihood Detector with Voting LLD-Vote

Furthermore, to further understand how our algorithm com-
pares with other probabilistic alternatives, we will also eval-
uate the LLD-Max detection activation algorithm in combi-
nation with the voting algorithm of the LLR detector, and
vice-versa.

To summarize, in table II we list five event detection
algorithms that are used in this work. For additional details
please refer to the respective publications.

C. Performance Metrics

Regarding the performance metrics we use the Precision
(P ), Recall (R) and three variations of the Fβ − measure
(F0.5, F1, and F2).

In the event detection problem, P reports the fraction
of power events that were correctly detected among all the
detected events, whereas R reports on the fraction of existing
power events that were found by the event detector algorithm.

The Fβ −measure is a metric that balances P and R, and
is reported in terms of the weighted harmonic mean of these
two metrics. β is a weighting factor, and is used to attach
β times as much importance to R as to P . For example, if
β = 2, R is twice as important as P , whereas if β = 0.5, P is
twice as important as R. Finally, when β = 1, R and P have
the same weight.

D. Parameter Sweep

In order to gain deeper insights on the nature and structure
of the data that is produced by the event detection algorithms
we first performed a parameter sweep. A parameter sweep
refers to a controlled variation of a number of parameters in
a particular algorithm (i.e., structural changes) and provides
insights into how the different parameters affect the final
results.

In this particular case we decided to set the power threshold
(Pthr) to 30 Watts, since this is the minimum power change for
which there are labeled events in any of the four datasets. Also,
we used the real power signal, since it is probably the most
widely used power measurement in event detection literature.
Tables III, IV, and V show the parameters that were changed



TABLE III: Parameter ranges for the EH event detector

Parameter Min Max Increment
G0 0 5 1 (second)
w0 1 5 1 (second)
w1 1 5 1 (second)

Telap 0 5 0.5 (seconds)
Eedge 1, 0.5Fs, Fs

Total Models: 4950

TABLE IV: Parameter ranges for the LLR-Vote and LLD-Vote
event detectors

Parameter Min Max Increment
w0 0.5 5 0.5 (seconds)
w1 0.5 5 0.5 (seconds)
wv 0 5 0.5 (seconds)
vthr 5 * 15 (votes)
Total Models: 9500 (50 Hz), 11000 (60 Hz)

TABLE V: Parameter ranges for the LLR-Max and LLD-Max
event detectors

Parameter Min Max Increment
w0 0.5 5 0.5 (seconds)
w1 0.5 5 0.5 (seconds)

Mpre 0.5 5 0.5 (seconds)
Total Models: 1000

in each algorithm, the respective values, and the number of
produced models. Next we briefly describe each parameter. For
additional details, please refer to the respective publications.

In tables III, IV, and V w0 and w1 are the pre- and post-
event window sizes, respectively.

In the table III, G0 is the number of samples before the
sample under test, Telap is the minimum number of samples
before last power event, and Eedge is the index of the sample
inside the power event window after it is extracted from the
data. In table IV, wv is the length of voting window, and vthr
is the minimum number of votes that are necessary to trigger
an event.

Finally, it is important to remark that the number of models
for the LLR-Vote and LLD-Vote algorithms varies with the
sampling rate of the dataset. For example, in a 60 Hz dataset
for each half-a-second increment it is always possible to
increment twice the voting threshold by fifteen samples, which
is not always true in the case of 50 Hz datasets.

E. Metrics Calculation

In this step we compute the performance metrics for each
of the models returned by the parameter sweep. To do this,
we first count the number true positives (TP ), false positives
(FP ), true negatives (TN ) and false negatives (FN ) for each
model. This is done by comparing the events triggered by each
model with the true events in the corresponding dataset (i.e.,
the ground-truth). To accomplish this, we define a tolerance
interval in which the detected events must fall in order to
be considered correct detections. The detection interval is
defined by equation 3 and is based on the ground-truth position
(GT ), and tolerance (Tol) value that was added to account

for eventual ambiguity when defining where an event occurs
during the labeling process. [22].

Ω = [GT − Tol,GT + Tol] (3)

In previous work on this topic [22] the authors varied this
parameter from one to six seconds (in one-second steps) and
found that no improvements were observed with more than
three seconds. Consequently, we decided to set this parameter
to range between zero and three seconds with variable steps,
as defined by the set τ in equation 4, where Fs is the sampling
rate of the dataset.

τ = {0, 1, 5, 15, Fs, 1.5× Fs, 2× Fs, 2.5× Fs, 3× Fs} (4)

Regarding the process of creating the confusion matrix, we
developed an custom algorithm that given a list of detected
events and another one with the ground-truth data, works as
follows:

For each ground-truth event, if there are detections that fall
within the interval Ω given by equation 3, the event that is
closer to the ground-truth position (in absolute distance) or
the one that was detected first (in the case of equidistant
detections) is considered a TP , whereas the others must be
compared with the next ground-truth event. Otherwise, if no
events are detected within the specified interval, a FN is
added. Next, the detected events that do not fall within any
of the possible intervals Ω (one per each ground-truth event)
are considered FP . Lastly, when all the detected and ground-
truth events have been processed, the TN are calculated by
subtracting the TP , FN and FP from the number of samples
in the dataset, i.e., all the positions where an event could have
happened.

V. RESULTS AND DISCUSSION

In this section we present and discuss the different results
of this experiment. In sub-section V-A we analyze how the
different parameters affect the detection results. In sub-section
V-B we show how the detection tolerance parameter affects the
overall performance of the algorithm. In sub-section V-C we
give results for how the different detectors perform with re-
spect to the selected performance metrics on the four datasets.
Finally, in sub-section V-D we give results for how our event
detector compares with the other four alternatives across the
four datasets.

A. Detector Parameters

As we saw above, the LLD-Max detector has four tunable
parameters. Here, we discuss three of them and their effects
on the event detection process.

The first parameters we consider are the pre- and post-event
window lengths, w0 and w1, respectively. These determine
the number of samples to be used to calculate the mean and
variance of the power signal before and after the sample for
which we want to calculate the detection statistics.

Figure 3 shows, for each combination tested on the four
datasets, the mean number of events returned by all detectors
holding these parameters constant, while allowing the others
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Fig. 3: Mean number of events returned by all detectors when changing only the pre- and post-event window lengths

to vary. In this figure, we see that in BLUED A dataset (figure
3c) the behavior of the detectors is slightly different from that
of the other three datasets.

In UK-DALE 1, UK-DALE 2 and BLUED B, small values
for w0 and w1 clearly have more detected events. This happens
because any small variation in the data present in the pre- and
post-event windows, will change the mean and variance, thus
producing a change in the detection statistics. On the contrary,
as the size of these windows increase, the mean and variance
become less sensitive to noise in the data and consequent
stabilization of the detection statistics. Regarding BLUED A,
the reason for the consistent number of detected events for
small values of w0 and w1, is the fact that this is a very stable
dataset due to the low number of appliances. Consequently,
there will be very little variation in the mean and variance of
smaller windows.

These results also highlight that if w0 and w1 increase too
much, the number of detection will tend to increase as well.
The reason for this is that as the size of the two windows
increase, it is possible that the power changes from previous
or future events are represented in the mean and variance,
which may result in an increase or decrease of the detection
statistics. This effect is particularly evident in UK-DALE 1
and UK-DALE 2, that has it can be seen from table ??, have
a large number of events separated by less than 11 seconds

(i.e., w0 and w1 set to 5 seconds). Here again, BLUED A
shows a consistent number of detection, this time because of
the high dispersion of the power events (e.g., 75% of the power
events are separated by at least 18 seconds).

Finally, it is also noteworthy the fact that in UK-DALE 1, in
some situations the mean number of detected events is lower
than the number of real power events. The main reason for
this is the fact that 10% of the events in this dataset have
an absolute power change of about 30 Watts, meaning that in
some situations it is possible that the detection statistics will
be set to zero in equation 2.

Next we consider the length of the maxima precision
window, Mpre. This is the number of samples (to the left
and right) that must be lower than the actual detection statistic
value, such that it can be considered a power event. Figure 4
shows for each of the four datasets, the number of detected
events returned by all detectors when holding this parameter
constant, while allowing the others to change.

As expected, when this parameter increases, the number of
detection decreases. This is particularly evident in UK-DALE
1 and UK-DALE 2, where it is possible to observe that with a
precision of 2 or more seconds the average number of detected
events is lower than the real number of events. On the contrary,
a small precision value will trigger an extremely high number
of power events, since there is a high chance that detection
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Fig. 4: Mean number of events returned by all detectors when changing only the maxima precision
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Fig. 5: Mean F1-Score, for each dataset, under the different
detection tolerance values.

statistic values above zero will be considered extrema values.
Also noteworthy, is the fact that in BLUED B the number

of detected events is higher than the number of real power
events independently of the detection tolerance. Ultimately,
this means that this dataset is very prone to false positives
when using this particular algorithm.

B. Detection Tolerance

The detection tolerance refers to the number of samples
that we allow a detected event to deviate from the ground truth

location of the event and still be counted as a correct detection
(true positive). For example, if the detection tolerance is n
samples, then an event will be considered a correct detection if
it is reported within n samples prior to or following the actual
location of the ground truth event. This means that there are
effectively 2×n+1 positions in which a detection may occur
for that event to be considered as correctly detected.

Figure 5 shows the mean F1-Score, for each dataset, under
the different detection tolerances. We see from the chart that
after a tolerance value of Fs, (i.e., 1 second), the detection
results are not significantly affected by the tolerance value.
Again here, BLUED A shows a different behavior, with the
F1-score stabilizing just after a tolerance value of 5 samples.
As for the smaller tolerance values, there is an evident increase
in the performance with the increase in the tolerance, in
particular from 1 to 5 samples.

C. Event Detection

In this section, we give results for how the different detec-
tors perform with respect to the selected performance metrics
on the four datasets.

Figure 6 shows the obtained results in each datasets based
on P and R, as well as the best models according to F0.5,
F1, and F2 scores. Figure 7 shows the distribution of all the
results in each dataset according to the F1-score.

The first general observation is that the performance of the
event detection varies considerably with the data, with BLUED
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Fig. 6: Obtained results in each dataset based on P and R, and the best models according to the F0.5, F1, and F2 scores

A clearly outperforming the remaining datasets. This variation
is particularly evident in figure 7. A one-way ANOVA statis-
tical test for comparing the Top-100 models (based on the F1-
Score) across the four datasets shows that for α < 0.05 there
are statistically significant differences between the datasets
(F = 4049.92, p = 0.0 ). A follow up ad-hoc Tukey test
shows that these differences are significant between all the
four datasets. The same is true for the other four performance
metrics, suggesting that the event detection results are heavily
dependent of the dataset, as it was previously mentioned by
the authors of [23].

Another observation is that, even within the different
datasets there is a considerable variation in the obtained
results. The exception here is BLUED A, that shows more
consistent results, with high P and R values. However, at this
stage we are starting to believe that performance evaluation
with BLUED A tend to produce over-optimistic performance
results.

Regarding the best models for each dataset, R shows that
it is possible to find models that are able to detect most of
the power events. Yet, the the highest R values come at the
cost of very low P values (i.e, a high number of FP). These
are known as liberal models, since the tendency is to trigger
power events even when the confidence is low. P on the
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Fig. 7: Distribution of all the results in each dataset according
to the F1-score

other hand, shows that models with low numbers of FP come
at an expense of also low number of TP. These are known
as conservative models, since they only trigger power events
when the confidence is high.

With concern to the Fβ-score, it is possible to observe that
F0.5 selects the models with the highest P for the best R. I.e.,
favours first a low number of FP, while attempting to keep the
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Fig. 8: Distribution of the Top-100 results for each algorithms across the four datasets, according to the F1-Score

number of FN low as well. On the other hand, F2, selects the
model with the highest R for the best P . I.e., favours first a
low number of FN, while attempting to keep the number of
FP also low.

Finally, it is possible to observe that the models selected
by F1, tend to be closer the models selected by P and F0.5.
However, it is not necessarily true that the selected models
have P higher than R. The reason for this lies withing the
mathematical formulation of this metric, in particular the fact
that the harmonic mean tends strongly to the smallest value.
In other words, the value of F1 is highly influenced by the
value of the lowest "parent" metric, be it P or R.

D. Benchmark

In this section, we give results for how our proposed event
detectors compares to other alternatives. Figure 8 shows the
distribution of the Top 100 detection results for each of the
five detection algorithms across the four datasets, according
to the F1-Score. Please note that the Y-axis was individually
scaled for better visualization.

To understand if your algorithm is significantly better than
the others, we run the one-way ANOVA statistical tests with
the five algorithms across the four datasets. This did not show
any statistical significant differences with either of the five
performance metrics. However, from the histograms in figure 8
it is possible to observe that our algorithm is very competitive
when compared with the original versions of LLR and the EH.

A second observation is that combining the extrema al-
gorithm with the LLR detection statistics algorithm (i.e.,
LLR-Max) provides better results than the actual LLD-Max
algorithm. The reason for this is related with the fact the
LLR uses the ln function in the detection statistics equation,
to increase its value when there are considerable differences
between the standard deviations of the pre- and post-event
windows, hence improving the extrema look-up results.

On the opposite direction, combining the Voting algorithm
with the LLD detection statistics (i.e., LLD-Vote) decreases
the performance. This we believe, suggests that the voting
algorithm is not very competitive, since it is very sensitive to
the number of votes threshold that needs to be set in advance.
I.e., a small voting threshold may results in a high number
TP, but at a cost of a high number of FP. On the other hand,
a high threshold tends to reduce the number detections, and
hence the FP and possibly the TP.

On a final note, we should also mention the very good re-
sults obtained with BLUED A, for each of the five algorithms
(F̃1 > 0.9). Furthermore, if we consider only the best result
(excluding the outliers) we can see that (F̃1 > 0.96). This we
believe is another indicator of the fact that the phase A of
BLUED tends to produce very optimistic evaluations.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented and thoroughly evaluated the
LLD-Max event detection algorithm.



In the first part of the evaluation, we showed how the
different parameter combinations will affect the algorithm
output. The, we compared the obtained performance across
four datasets and observed that the performance evidences
some considerable variations across them, independently of
the performance metric being used.

Then, in order to compare our algorithm with other al-
ternatives, we produced a benchmark between the LLD-Max
and four other detection algorithms. Our results suggest that
LLD-Max is very competitive in all four datasets, despite the
fact that it was not possible to find statistically significant
differences between the proposed algorithms.

Perhaps, even more noteworthy, we have learned that using
our method to extract the power events from the detection
statistics signal improves the results of the LLR algorithm
used in the benchmark. Ultimately, this new combination,
(LLR-Max), outperformed the LLD-Max in the four datasets,
which implies the importance of a "robust" detection statistics
equations.

Regarding future work, we believe that it would be impor-
tant to continue improving our detection activation algorithm.
For example, our results show that if Mpre is set to more than
two seconds it starts to miss too many power events. On the
other hand, if it set to less than 2 seconds it might trigger
to many false detection. Against this background, future work
should look at ways to avoid relying so much on how this
parameter is set when looking for the (extrema) values in the
detection statistics signal.

Finally, despite the fact that we managed to benchmark our
algorithm with four alternative approaches, we believe that
in order to truly assess the competitiveness of the LLD-Max
(and other algorithms), we should also introduce event detec-
tors from the match filters category, and possibly additional
datasets.
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