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Abstract—Current approaches for collecting and labeling Non-
Intrusive Load Monitoring (NILM) datasets still rely heavily on a
lengthy and error prone manual inspection of the whole dataset.
Consequently, it is still difficult to find fully labeled datasets that
could help furthering even more the research in this field. In
an attempt to overcome this situation, we propose a hardware
and software platform to collect and label NILM sensor data
in a semi-automatic labeling fashion. Our platform combines
aggregate and plug-level smart-meters to measure consumption
data, software algorithms to automatically detect changes in the
different monitored loads and a graphical user interface where
the end-user can supervise the labeling process. In this paper, we
describe the different components that comprise our platform.
We also present the results of one live deployment that was
performed to test the feasibility of our approach. The results of
the deployment show that our system was capable of explaining
about 82% of the aggregate load, and automatically detect 94%
of the power transitions in the plug-level loads.

Index Terms—Hardware-software platform, semi-automatic
labeling, intelligent user interface, datasets, non-intrusive load
monitoring, event detection.

I. INTRODUCTION

Environmental sustainability is one of the fastest growing ar-
eas of activity in several research fields like Ubiquitous Com-
puting (UbiComp) and Human Computer Interaction (HCI). In
part, this reflects the observation that pervasive technologies
can provide a platform for reflection and intervention with pos-
itive social benefits. Thus, many researchers began examining
the opportunities to use interactive technologies to promote
environmental sustainability and, in particular, sensing and
context aware applications for energy monitoring and eco-
feedback.

From the early expectations that interactive technologies
could make a significant impact in promoting a more sus-
tainable future, the community is currently facing several
engineering challenges. Like in any other engineering domain,
the transition from research prototypes to large-scale deploy-
ment of sensing and interactive infrastructures is creating
substantial research challenges that have not been foreseen
by the stakeholders.

Within the energy and environment research community
energy disaggregation is a promising approach. One partic-
ular technology of interest is Non-Intrusive Load Monitoring
(NILM) [1], since it enables a cost effective way of providing
detailed information about energy consumption from a single
sensing point. Research in this field aims at disaggregating
and estimating the consumption of individual appliances by
means of applying machine learning techniques on top of
the aggregated consumption signal. Together with the avail-
ability of public datasets this approach is gaining traction as
researchers create more systematic evaluation processes that
can be used effectively. This is aligned with what happened in
other machine learning application domains like, for example,
face and motion recognition.

To date NILM research is formally categorized according
to two different approaches: i) event-based approaches, which
consist of keeping track of every appliance state transition
(e.g. TV turning ON or OFF) by means of event detection and
classification, assuming that the system was previously trained
[1], [2], and ii) event-less approaches, where no previous
knowledge of the existing appliances is assumed and the load
disaggregation is done by means of techniques like Hidden
Markov models or temporal motif mining [3], [4]. Extensive
reviews of the existing approaches for single point energy
disaggregation can be found in [5], [6]. Here we focus on
the challenges posed by the need to create and interact with
public datasets for assessing the performance of the different
NILM algorithms.

In this paper, we argue that one of the main reasons
behind the shortage of fully labeled datasets to evaluate and
benchmark both event-based and event-less approaches is the
difficulty in labeling the acquired data. On the one hand we
cannot rely only on automatic labeling processes, as these
methods still do not guarantee enough accuracy. On the other
hand, we cannot solely rely on humans to label the data since
this is a very time consuming processes that is also very
prone to mistakes. Against this background, in this paper, we
propose one attempt to overcome this problem, which could
be generalized to other datasets from different domains. We



describe a proposal for a novel hardware and software platform
to collect and label NILM datasets, following a semi-automatic
labeling approach.

The remaining of this paper is organized as follows: first we
describe the relevant state of the art and thoroughly describe
our hardware and software platform. Then we present the
results of a pilot study that was done to test the feasibility
of the proposed approach. Finally, we conclude and outline
future work.

II. STATE OF THE ART

A NILM dataset is a collection of electric energy mea-
surements taken from buildings in real world conditions.
These usually contain measurements from the whole-house
consumption (taken at the mains) and of the individual loads
(i.e., ground-truth data). Individual loads are obtained either
by measuring each load at the plug-level or measuring the
individual circuit where the load is connected.

Like NILM approaches, the currently available datasets
are also categorized by event-based or event-less. The major
difference between the two categories lies in the fact that the
latter does not require the identification the appliances respon-
sible for the different changes in the aggregate power (also
known as power events). Consequently, collecting datasets for
event-less approaches is more straightforward and less time
consuming, which in part explains the higher availability of
this kind of datasets [7].

Among the former category, are the Reference Energy
Disaggregation Dataset (REDD) [8], the Almanac of Minutely
Power dataset (AMPds) [9], the Indian Dataset for Ambient
Water and Energy (iAWE) [10] and the “UK-Dale” [11],
all providing aggregate and individual appliance consumption
data. As for the latter category, only the Building-Level fUlly-
labeled dataset for Electricity Disaggregation (BLUED) [12]
is currently available.

Semi-automatic labeling of sensor data is not a new topic
and it was already attempted in other machine-learning do-
mains including context aware driving [13], image segmenta-
tion [14] and video annotations [15]. In the field of energy
disaggregation, with the exception of [16], this is the only
attempt to label ground-truth data in semi-automatic fashion.
In [17] Cao et al. also propose a framework for annotating
energy datasets, however their approach differs from ours in
two fundamental aspects: i) the users are requested to annotate
active states (i.e., periods when appliances are in use) instead
of power events, and ii) the annotation process is fully manual.

III. HARDWARE AND SOFTWARE PLATFORM

The underlying platform for our NILM research is based on
low cost technologies. On the hardware side, a bespoke smart-
meter is combined with a commercially available plug-level
energy monitoring system to collect aggregated and individual
appliance consumption data. On the software side, a web-
based application was developed to support the semi-automatic
labeling of the individual appliances data. In the following we
discuss the implementation details of our system.

Fig. 1. Whole-house monitoring hardware installed in the main breaker box:
general overview (left), DAQ system (right).

A. Whole-House Data Collection Setup

To collect data about the whole-house and individual circuits
consumption we created our own energy monitoring setup
by extending the multi-house energy monitoring and eco-
feedback platform described in [7]. The setup consists of
a multi-channel data acquisition board (LabJack U61), one
processing unit (Toshiba NB300), and a combination of current
transformers (CT) and voltage transformers (VT). The number
of channels to sample simultaneously and the desired sampling
rate varies according to the number of current and voltage
sensors. For example, the U6 DAQ takes 14 analog input
channels with 16-bit resolution and a maximum sampling rate
of 50 kHz, which is enough to measure the whole house
consumption (current and voltage) and 12 individual circuits
(current) with a maximum sampling rate of 3.2 kHz. Figure 1
shows an example of how the system looks like once installed
in the main breaker box of a house.

In this setup, the sampled current and voltage waveforms
are stored in the EMD-DF file format [18] in one-hour files.
The EMD-DF is a common file format and API to create
and maintain energy disaggregation datasets. The proposed
file format is an extension of the Waveform Audio File
Format (WAVE) and enables the storage of different power
demand metrics (e.g. apparent, real and reactive power) along
with individual appliance activity (power events), groups of
appliance activities (e.g. combine all the clothes-washer, dryer
and iron individual activities to form the laundry user activity)
and other relevant metadata in a single compact file.

In order to minimize the effects of synchronization issues
that may occur due to the differences in the internal clocks2

of the data acquisition devices, we decided to perform a
hardware-timed data acquisition (i.e., the DAQ hardware is
responsible for acquiring the requested number of samples)
and a software-timed storage of the data (i.e., a new file
is always created exactly one hour after the previous one,
independently of the number of samples that has been stored).

Finally, since the EMD-DF format only supports real values
between -1 and 1, the current and voltage measurements are
scaled before being stored. To state more precisely, each
channel is scaled according to the maximum expected value
(plus a confidence interval) that varies according to the sen-

1LabJack U6 DAQ, http://www.labjack.com/U6
2LabJack Forums, https://goo.gl/GTMp9Y
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sor characteristics. An example of the scaling procedure in
provided in sub-section IV-A.

B. Plug-Level Data Collection Setup

For the appliance-level data collection we used the Plug-
wise3 system (this was also used in [19], [20]). This plug level
system is a commercially available, distributed sub-metering
platform that consists of three main components namely the
circle (also called module), the stick and the source software.

Each circle is connected between the appliance being mea-
sured and the power outlet. The stick connects (using the
ZigBee4 protocol) the deployed circles to a computer that
processes and displays the consumption of each individual
appliance using the source software. This software aggregates
the individual appliance measurements (e.g., by hour, day or
month) and generates multiple consumption reports to the end-
users.

This is however limited when we consider the level of
granularity required to label a dataset for event-based NILM,
e.g., knowing if an appliance is ON or OFF and when
the transitions happen. Consequently, we developed our own
monitoring software by extending an open-source Plugwise
python5 package that enables direct access to the raw mea-
surements of each module.

The original version of this package maintains a hard-coded
list with the mac-address of the modules to be monitored and
sequentially scans each of them in 10 seconds intervals. When
a given module does not reply within six attempts (each failed
attempt takes about one second) an exception in thrown and
the system moves to the next plug in the list. Finally, the
obtained measurements (timestamp and power) for each plug
are continuously stored in individual comma-separated-value
(CSV) files, created daily at 12 AM.

This solution presents some considerable caveats when
collecting NILM datasets, for instance: i) in the best scenario
(when all the modules are accessible), individual appliance
measurements are only available once every 10 seconds, and
ii) the sampling interval increases by six seconds for each
module that happens to be out of range or offline. Against
this background, we modified the original scripts to make the
data collection process more suitable for NILM datasets. The
following changes were made:

• The 10-second interval between scans was set to zero,
meaning that a new scanning round-trip begins right after
the previous one is concluded. Our tests have shown that
it takes about one second to scan 10 plugs (1 Hz) and
two seconds for 19 plugs (0.5 Hz), when all the plugs
are online;

• We added the possibility of enabling and disabling mod-
ules in runtime. For example, whenever a module is not
plugged to a socket (e.g., a vacuum cleaner is normally

3Plugwise, https://www.plugwise.com/
4Zigbee, http://www.zigbee.org
5Plugwise Python, https://github.com/SevenW/Plugwise-2-py

stored in a closet) it can be disabled, thus avoiding unnec-
essary scans to disconnected devices and the consequent
delays when scanning the remaining modules;

• We added the possibility of renaming modules in runtime.
For example, if an appliance is replaced during the
deployment it is possible to reflect that change in the
dataset;

• We developed a daemon that reads the raw CSV files and
pushes the measurements to a database. This daemon was
set to run once per minute (1/60 Hz), but if needed it is
possible to have it running at least every second (1 Hz).

C. Semi-Automatic Labeling Application

The core of our platform is the semi-automatic labeling
application that is divided in two major tasks: i) the automatic
event detection, and ii) the human supervision. The automatic
event detection relies on an event detection algorithm, that
attempts to locate the power events in the ground-truth data.
These events are then presented to the end-user in a graphical
user interface where the human supervision task happens. In
the following we describe the event detection algorithm and
the semi-automatic labeling application.

1) Event Detection Algorithm: Our event detection algo-
rithm is a modified version of the expert heuristic event
detector presented in [21]. It works with one sliding window
(detection window) of length L, that is used to scan the power
signal looking for changes in the signal (DP ) that are above a
pre-defined power threshold (PT ) in absolute value. The value
of L depends on the number of samples to be averaged before
and after the sample of interest, i.e., L = Lpre + Lpost + 1
where Lpre and Lpost are the number of samples before and
after the sample of interest, respectively.

The algorithm works as follows: for each power sample,
the amount of power change DP is calculated by subtracting
the average power before, from the average power after that
sample. Then, in the second step, samples with a DP above
the predefined threshold PT (in absolute value) are flagged as
possible power events. Finally, in the third step, the flagged
power events that are separated by at least TS seconds are
confirmed as events, whereas the others are discarded.

Overall, this algorithm has four parameters, Lpre, Lpost,
PT and TS. These can be changed individually for each
appliance per its characteristics, thus increasing the event
detector accuracy.

2) Semi-Automatic Labeling Interface: In the semi-
automatic labeling user interface, the power measurements and
the power events are plotted together in separate series (see
figure 2) offering to the user the possibility of supervising the
labeling process. The power samples are represented in a area
series, whereas the power events are represented in column
series.

The semi-automatic labeling follows a two-step process,
namely: i) loading and plotting the power measurements, and
ii) the event supervision. Next, we describe the two steps in
mode detail.

https://www.plugwise.com/
http://www.zigbee.org
https://github.com/SevenW/Plugwise-2-py


Fig. 2. User interface of the semi-automatic labeling application. Power samples are represented by an area series, whereas the power events are represented
as column series.

Loading power measurements: A system like this one
generates a large amount of data. For example, with two-
second read intervals one day of measurements represents
43.2k samples. Furthermore, since most of those samples
refer to steady-state periods (i.e., continuous periods when no
relevant power changes are observed), much of the sampled
data has similar values, and therefore are not necessary in
the user interface. Consequently, in order to keep the amount
of data to be transferred and presented to the user to a
minimum, we implemented a steady-state detection algorithm
(SSD) to automatically remove such periods. This allows the
data to be transferred and rendered in the semi-automatic
labeling application much faster, and allows a more fluid
user interaction due to the reduced number of samples to be
computed.

Our SSD algorithm works by dividing the power signal
in W windows of length L, and removing the samples
from the windows with a standard deviation bellow a pre-
defined threshold (SDT ). Whenever a window has a standard
deviation above the pre-defined threshold, the samples in the
previous and the next window are kept to make sure that steady
state areas are correctly represented in the visualization. Lastly,
the data from the fist and last windows are always kept, to
guarantee that the time span represented in the visualization
is the same as in the original data.

Overall, this algorithm contains two parameters, L and
SDT that were experimentally set to one minute (30 samples)
and 10% of the most represented power value above 50 Watts,
respectively. In the case of appliances that consume less than
50 Watts, the SDT was set to 10% of the difference between
the maximum and minimum observed power values.

In figure 3 we show the results of applying the SSD
algorithm to one day of consumption from a dishwasher. On

the top, we show the original consumption data with a total
of 30.004k samples. In the center, we depict the original data
zoomed to the area where the dishwasher is active. Finally, in
the bottom we show the data returned by the SSD algorithm,
with a total of 374 samples, which is less than 2% of the
original data.

As it can be observed, the application of a very simple
SSD algorithm considerably reduces the overhead in data
transmission, rendering and navigation, while keeping the
original data in the areas where the appliances are active. We
should remark that this last point is of crucial importance in
our case, since we want the labels to be as close as possible

Fig. 3. Example of the SSD algorithm application: original data (top), original
data zoomed (center), output data (bottom).



to the actual time of occurrence.
Event supervision: During the supervision process, users

can delete the automatically generated labels by double-
clicking on the respective column in the chart. Users can also
add and remove labels in runtime by clicking the desired power
measurement or double-clicking the created labels.

Deleting a label that was created by the user completely
removes it from the chart. Removing a system labels will
only change its color, hence offering the user the possibility
of reactivating that label. All the generated labels (system and
user) are kept in a database independently of being active or
not in the user interface. Furthermore, the number of times
that a label is created and / or removed is also recorded in the
database, for future data analysis.

Finally, we added additional mechanisms to make the navi-
gation in the data smoother: i) we allow the data to be filtered
by time intervals, ii) we allow users to automatically move to
the next our previous analogous time interval, iii) we provide a
data navigator, where the users can get a sense of the available
data, and iv) we added the possibility of automatically setting
different zoom levels, hence allowing faster navigation to the
desired data points. Figure 2 shows an annotated screenshot
of the semi-automatic labeling application.

IV. PILOT DEPLOYMENT

To understand the feasibility of our proposed platform we
conducted a 10-day long pilot study in one household with four
residents (two adults and two children). Next we describe the
deployment setup and the evaluation methodology.

A. Deployment Setup
The monitored house is an apartment from the early 2000s

and is comprised of seven divisions. The collected measure-
ments include aggregated (whole-house) consumption and the
individual consumption of 17 appliances, as listed in table 1
(columns 1 to 3).

The whole-house monitor (computer, DAQ and sensors) and
the plugwise system (computer with the USB stick) were
installed in the living room where the main breaker box is
located. The monitored appliances were distributed across 6
rooms: kitchen (7 appliances), living room (3), laundry room
(3), bedroom I (1), bedroom II (2) and bedroom III (1). Some
devices like lamps, hard-wired appliances (e.g., ceiling lights)
and miscellaneous chargers (e.g., cell phones and tablets) were
not individually monitored, either because they cannot be
monitored using our system (ceiling lights) or they don’t draw
enough power (less than 30 Watts) to justify fully labeling the
dataset with their power changes (the miscellaneous chargers).

The current waveforms were sensed using a 30 A to 1 V
current transformer with a peak instantaneous voltage of about
1.47 V. Therefore, to avoid clipping when storing in the EMD-
DF format, the data was scaled by a factor of 1.5 V (1. 47 V
± 5 % margin). The voltage waveforms were sensed using a
230 V to 0.5 V voltage transformer with a peak voltage of 0.7
V. As such, no scaling was necessary. As for the ground-truth
data, our system registered a new power measurement roughly
every two seconds (0.5 Hz).

B. Evaluation Methodology
After deploying our system, we conducted an evaluation

that looked at the efficiency of the hardware and software
platform to explain the aggregate consumption, and also how
to fine tune the event detector parameters to each individual
load. In the following sub-sections we describe the evaluation
methodology.

1) Individual Appliance Monitoring: First, we evaluated
the efficiency of the system in monitoring the consumption
of the individual appliances. To this end, we look at the
number of samples obtained for each appliance, the time
between consecutive measurements and the percentage of
energy explained (i.e., the % of aggregate energy for which
there is appliance-level consumption data).

2) Event Detection: Regarding the event detection, our goal
was to find the best parameter combinations, i.e., the best
combination of Lpre, Lpost, PT , and TS, for each individual
appliance. This is done following a threefold approach: i)
manually label the power events of each appliance using the
semi-automatic labeling interface in order to collect ground-
truth data, ii) execute a parameter sweep of the event detection
algorithm against each appliance to get the different event
detection results, and iii) evaluate the performance of the
parameter sweep results against the manually labeled power
events. Next, each step is described in detail.

Manual labeling of power events. To collect ground-truth
of the power events we first had to manually label the power
events using the interface described in the previous section.
We should remark that we could have used the semi-automatic
labeling to provide the ground-truth labels, but we wanted to
make sure that all the labels were only from manual inspection
of the data, otherwise the position of the labels could be biased
by the output of the different models.

The number of power events for each appliance are listed
in table I (power events column). As it can be observed, there
are no events for the freezer and the clothes washer. Regarding
the freezer, we noticed that it was always ON (which was
surprising, since such appliances usually have a duty cycle).
As for the clothes washer, it was not possible to manually label
the data due to the considerably high number of transitions.
As such, we have decided to leave this device out of the semi-
automatic labeling experiment.

Parameter sweep of the event detection algorithm. A
parameter sweep is a controlled variation of a number of
parameters in a particular algorithm (i.e., structural changes)
and provides insights into how the different parameters affect
the final results In this case, considering that the measurements
are separated by at least two seconds, we have decided to fix
the pre and post window lengths to one sample, and change
only the PT and TS parameters. The power threshold (PT )
was set to vary between 10%, 25%, 50% and 75% of the most
represented sample in each appliance (i.e., the mode). Finally,
the minimum elapsed time between events (TS), was set to
vary between 2, 5, 10, 15, 30 and 60 seconds.

Ultimately, this parameter sweep returned 24 different event
detection models, each of which was applied to 15 appliances



Fig. 4. Aggregate consumption vs. the sum of the individual appliances summarized by date and hour.

(excluding the freezer and the clothes washer).
Model evaluation against the ground-truth data. In order

to evaluate the different models, we first had to compute the
contingency matrix for each event detection test (i.e., count the
number of True Positives -TP -, False Positives -FP -, False
Negatives -FN - and True Negatives -TN -). To do this, we
considered TP to be those events that were detected at most
two seconds before or after the ground-truth timestamp. The
FP positives are obtained by subtracting the number of TP
from the total number of detected events. The FN are obtained
by subtracting the number of TP from the number of ground-
truth events. Finally, the TN are computed by subtracting the
sum of TP , FP and FN from the total number of power
samples in the respective appliance. We then computed the
following performance metrics from the resulting contingency
matrix: Precision (P ), Recall (R) and F1.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the results of the
pilot deployment.

A. Individual Appliance Monitoring

In order to evaluate the performance of the system as a tool
to collect datasets, we first look at the number of acquired
samples and compare that value with what was expected in
theory.

Overall, the deployment lasted 9 days and 18 hours, mean-
ing that with an acquisition rate of 0.5 Hz, the system should
have collected 421242 samples per appliance. As for the actual
collected sample, the average was 356705 (n = 17, SD =
952). This is about 92% of the expected samples, and the
low standard deviation indicates that this value is consistent
across all the 17 appliances. Additionally, we also looked at

the time interval between consecutive measurements, and the
results shown that about 93% of the samples are separated by
exactly two seconds, 2.6% separated by three seconds, 1.6%
by one second and 1.10% by four seconds.

To further understand the potential of our platform we also
examined how much of the demand was captured by the sub-
metering platform. To this end we computed the aggregate
consumption for the duration of dataset (from the raw current
and voltage waveforms) and compared that with the sum of
the aggregate consumption of the 17 monitored loads.

In figure 4 we show a plot of the aggregated and the sum
of the individual appliances consumption grouped by date
and hour. We also plot the percentage of energy explained
(%EE), showing that in average the ground-truth data is able
to explain 82% of the aggregate consumption. Likewise, it is
also possible to observe that there are occasions when the %EE
is above 100%. This happens because during some periods
the whole-house data acquisition hardware stopped working.
As such, when summarizing the data (e.g., by hour) there
were occasions when the sum of the individual appliances
consumption is higher than the aggregated demand, which is
then reflected by an %EE above 100%.

Ultimately, considering the fact that most of of the existing
datasets normally present considerable gaps in the ground-
truth data [22], we believe that this is a very promising result.
Nevertheless, our system suffers from the fact that using only
plug-level meters it is not possible to collect ground-truth
data for any loads that are not connected to a wall-socket
(e.g., ceiling lights and appliances with dedicated circuits),
which in this particular deployment represent about 20% of
the household consumption.



TABLE I
LIST OF MONITORED APPLIANCES AND EVALUATION RESULTS: POWER (W) REFERS TO THE MOST REPRESENTED POWER MEASUREMENT OF THE

APPLIANCE, AND EVENTS TO THE NUMBER OF POWER EVENTS. “E” IS THE NUMBER OF TP DETECTED IN THE POSITION THAT WAS LABELED MANUALLY.

Appliance Power (W) Events
Detection Results

TP FP FN P R F1 E (%) BDP (PT%; ET)
Clothes washer 150 * - - - - - - - -
Coffee machine 950 60 57 7 3 0.89 0.95 0.92 57 (100%) (10%, 15)
Dishwasher 50 50 46 1 4 0.98 0.92 0.95 46 (100%) (50%; 30), (50%, 60)
Freezer 50 0 - - - - - - - -
Kettle 1800 62 62 0 0 1 1 1 62 (100%) (50 %; 30)
Laptop 1 24 6 5 1 1 0.83 0.83 0.83 5 (100%) (25%; all)
Laptop 2 50 22 7 64 15 0.1 0.32 0.15 7 (100%) (75%; 60)
Microwave 1350 152 123 22 29 0.85 0.81 0.83 121 (98%) (25%; 10)
Oven 1600 20 20 0 0 1 1 1 20 (10%; 30), (10%; 60)
PlayStation 4 100 22 21 4 1 0.84 0.96 0.89 21 (25%; 60)
Refrigerator 100 514 514 0 0 1 1 1 514 (25%; 30), (25%; 60)
Stove 1750 818 777 24 41 0.97 0.95 0.96 773 (10%; 15)
TV 1 50 6 6 0 0 1 1 1 6 (25%; 15), (25%, 30), (25%, 60)
TV 2 + Box 100 60 58 1 2 0.99 0.97 0.98 58 (10%; 60)
TV 3 + Box 50 22 22 0 0 1 1 1 22 (10%; 30), (10%; 60)
TV 4 + Box + Home cinema 300 46 12 39 34 0.24 0.26 0.25 12 (50%; 15)
Water heater 2800 336 336 0 0 1 1 1 336 (10%; 60)

B. Event Detection

In semi-automatic labeling systems, the ultimate goal is
to minimize the need for user intervention. In other words,
minimize the number of FN (i.e., events that must be added
by the user) while also minimizing the number of FP (i.e.,
events that must be removed from the interface). In terms of
Precision and Recall, this means that the best event detectors
are those that are able to maximize both metrics, i.e., F1 is
close to P and R. In table I we show the best models that we
obtained for each appliance, according to the F1 metric.

An overall look at the data shows that selecting the best
parameters for each appliance it is possible to automatically
detect 94% of the existing power events (2066 out of 2196).
This number of automatically detected events comes at a
cost of 163 false positives that should be removed from the
interface, and 130 false negatives that still have to be manually
added by the end-user. Ultimately, if we consider only the act
of providing the correct labels to the data, these results show
that the need for user intervention is reduced by about 86%
(i.e., 293 clicks instead of 2196).

A more in-depth analysis also reveals that for some appli-
ances (kettle, oven, refrigerator, TV 1, TV 3 and the water
heater) the need for end-user intervention is reduced by 100%
(i.e., FN = FP = 0). On the other hand, this analysis also
reveals that in two particular cases the system performs very
poorly. Namely, the laptop 2 and the television 4 + box +
home cinema.

One possible explanation for such poor results is the con-
siderable noise that is added by these appliances, as shown
in figures 5 and 6. Ultimately, for the selected detection algo-
rithm, this noise produces a higher number of absolute step
changes (PS) above the pre-defined threshold (PT ), which
are erroneously considered power events (i.e., the number of

FP increases considerably, thus deteriorating Precision).
To further understand this issue, in figure 7 we plot the

Precision and Recall values for these two appliances. As it can
be observed, in the case of the laptop 2 it is possible to find
models with Recall values above 0.86 (1, 2, 7, 8). However,
this decrease in FN comes at a cost of a prohibitive number
of FP , and consequent deterioration of Precision.

As for the television 4 + box + home cinema, the results
indicate that even the more liberal detectors (i.e., favours
models with less FN independently of the number of FP )
are not able to find more than 60% of the power events, which
penalizes both Precision and Recall.

VI. CONCLUSIONS AND FUTURE WORK

Energy monitoring and especially Non-Intrusive Load Mon-
itoring is a very active field of research with continuous
interest over many years now, and the lack of proper datasets
is believed to be one of the main reasons behind the almost
absence of formal evaluations of the existing approaches. In
this paper, we have presented and evaluated an approach that
we believe can help produce better datasets by attempting to
provide labels to the data in a semi-automatic fashion, thus
alleviating researchers from the burden of doing this process
manually.

Our initial results clearly advocate in favor of our a solution,
in particular if we consider the high percentage of sub-
metered energy (only about 7% of the samples were lost)
and aggregated energy explained (over 80%). This said, future
work should look at incorporating new sensors, and/or sensing
techniques, such that it is possible to increase the percentage
of energy explained. These solutions, should be able to capture
the consumption of three types of loads that were only seldom
considered in our approach. These are, hardwired loads like



Fig. 5. Weekly consumption of the laptop # 2, showing how the the noise in the signal increases the number of false detections.

Fig. 6. Weekly consumption of the TV # 4 with the TV Box and Home Cinema, showing how the the noise in the signal increases the number of false
detections.

Fig. 7. Precision and recall for the laptop 2 and the TV 4. The models selected
using the F1 metric are highlighted with a glow effect.

ceiling lights, fast switching loads like washing machines, and
loads without a fixed socket (e.g., the vacuum cleaner).

Regarding the semi-automatic labeling process, our results

clearly indicate that when the sub-metered data is available
it is possible to automatically find and label most of the
transitions in the dataset with minimal user interference. Still,
future work should look at incorporating additional algorithms,
in particular targeting appliances that generate more noise.
Furthermore, future work should also target different datasets,
such that is possible to find which event detection models are
more suitable for each appliance type.

Additionally, in future work we also aim at understanding
how different users use the semi-automatic labeling application
to label the same data, such that it is possible to quantify and
better understand the levels of labeling ambiguity.

One possible improvement for this application would be
the introduction of a second mode of interaction in which the
end-users confirm the correct labels, instead of removing the
wrong ones. It would therefore, be important to understand in
which mode the end-users feel more comfortable. For example,
confirming true positives implies a number of clicks at least
equal to the number of events, which can be problematic for
appliances that draw many power events like the refrigerator.

Another very important aspect that was not discussed in this
paper is the direct mapping between the ground-truth labels



and the aggregate consumption data. For example, we are
currently not aware of how the differences in the sampling rate
of the two data streams will affect this mapping. Consequently,
it would be of crucial importance to address this topic in future
works.

Finally, future work should also look at ways to engage
participants to the labeling process. One possibility is to rely
on crowd-sourcing and citizen science for the supervision
tasks, by adding the notions of experts and non-expert users.
The former can be anyone willing to participate in the semi-
automatic labelling process, whereas the latter should be
someone that already has deep knowledge of the underlying
research problems, as these would be responsible for assuring
the quality of the labelling process.

Downloads For replication and re-utilization purposes, the
source-code, pilot data, and the event detection results are
publicly available in the following URL: http://aveiro.m-iti.
org/feel
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