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ABSTRACT The work in this paper proposes the application of the pinball quantile loss function to guide a
deep neural network for Non-Intrusive Load Monitoring. The proposed architecture leverages concepts such
as Convolution Neural Networks and Recurrent Neural Networks. For evaluation purposes, this paper also
presents a set of complementary performance metrics for energy estimation. Finally, this paper also reports
on the results of a comprehensive benchmark between the proposed network and three alternative deep neural
networks, when guided by the pinball and Mean Squared Error loss functions. The obtained results confirm
the disaggregation superiority of the proposed system, while also showing that the performances obtained
using the pinball loss function are consistently superior to the ones obtained using the Mean Squared Error
loss.

INDEX TERMS Non-intrusive load monitoring, NILM, recurrent neural networks, convolutional neural
networks, pinball quantile loss, mean squared error loss, benchmark.

I. INTRODUCTION
For many years, Non-Intrusive Load Monitoring (NILM) [1]
has remained a challenge for researchers in the area. The
problem is complex due to the sheer number of variables to
take into consideration. Simply put, NILM has as objective
determining which appliance is active and how much it is
consuming at each time instance. However, the challenge
lies in the limitation of available data for algorithm train-
ing, dependencies of unknown factors such as the number
of appliances in each household, unique appliance charac-
teristics, and different consumption patterns. NILM can be
approached as a classification or regression problem. It can
be considered as a classification problem when the objective
is the detection and classification of an appliance among a
complex signal. It is a regression problem when the aim is to
estimate the consumption of the individual devices directly
from the aggregated energy intake.

Many methods have been proposed throughout the years to
solve this problem, ranging from ‘‘classic’’ machine-learning
algorithms (e.g., Support Vector Machines, Lazy Learn-
ers, and Artificial Neural Networks), to advanced statistical
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learning methods like Hidden-Markov Models and Bayesian
Statistics. A review of these methods is out of the scope of
this paper. Instead, the interested reader can refer to the many
literature reviews on these methods [2]–[4].

Recently, deep learning (DL) algorithms have been con-
sistently establishing new state-of-the-art performances in
many fields [5]. These include advances in language models
such as [6], a language model capable of text synthesis, and
summarizing, among other uses. Audio generation has also
been benefited in [7] and [8], as well as image segmentation
for medical applications [9]. NILM is no exception to this
trend. As such, recent times have seen a burst in DL proposals
to solve this problem, e.g., [10]–[15].

However, to achieve competitive results, DL methods
require an abundance of training data. This is still a sig-
nificant problem for NILM considering the lack of high-
quality datasets, both in terms of duration and quality of
the labels [16], [17]. Likewise, such approaches also benefit
significantly from a high number of trainable parameters,
requiring computational power that is not cheap nor readily
available in most cases.

The contributions of this paper to the ongoing body of work
in NILM are threefold. First, it proposes PB-NILM, a deep
neural network composed of different types of layers such
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as convolutional, recurrent, and fully connected layers, and
guided by the pinball (PB) quantile loss function [18], [19].
Second, it proposes a set of performance evaluation met-
rics, including the Correctly Estimated Power (CEP). Third,
it provides a comprehensive evaluation and benchmark of
PB-NILM against the same architecture when guided by
the Mean Squared Error (MSE) loss function, and of three
alternative deep learning architectures also guided by the PB
and the MSE loss functions.

The remaining of this paper is organized as follows.
Section II presents the main advances in the machine learning
field, with varied applications, proceeding to the quintessen-
tial components of deep learning, and an overview of the
pinball quantile loss function. Building on these works,
Section III presents PB-NILM, a deep neural network that
is guided by the PB quantile loss function and establishes a
benchmark with the standard MSE loss function. The eval-
uation methodology is presented in Section IV. This section
also introduces a new set of performance evaluation metrics
and details the network’s training and testing methodology.
Section V presents and briefly discusses the performance
evaluation results. Further discussions are then presented
in Section VI. Finally, in Section VII, the paper concludes
with an overview of the presented work, its limitations, and
potential future work directions.

II. RELATED WORKS
Recent approaches to a variety of machine-learning problems
try to leverage the power of DL, developing new architectures
that are composed bywhat can be considered the fundamental
building blocks of neural networks - convolutional [20], [21],
recurrent [22], [23], and fully-connected layers.

These are often used in tandem to achieve competitive
results in a particular task, with each layer providing a certain
benefit to the architecture. Some of the widely used deep
networks include the WaveNet [8] for audio generation and
synthesis, ResNet [24], DenseNet [25] and Xception [26] for
image classification and segmentation.

The WaveNet was developed to generate audio excerpts,
by making use of dilated convolutions that preserve the size
of the input data. This also allows for a much wider receptive
field, thus improving the feature extraction process. In [13],
the authors introduce WaveNILM, an architecture based in
the WaveNet to leverage the dilation properties to achieve
better disaggregation results. The latter was trained on the
AMPds dataset [27], using 90% of the data for training,
and the remaining 10% for testing. The performance of the
method was reported using the estimated accuracy metric,
which reports the total disaggregation over all timesteps. The
proposed method was analyzed using the aggregated signal,
achieving performances of over 85% in all the reported test
cases.

Wu and Wang [14] propose the concatenation of convo-
lutional layers to classify different appliances by making
use of spectrograms based features. The authors explore the
application of theDenseNet and Xception architectures on the

UK-DALE [28] and REDD [29] datasets for appliance clas-
sification. A common characteristic between these architec-
tures lies in the almost exclusive use of convolutional layers.
In terms of classification results, the authors report F1-Score
values for the kettle, fridge, dishwasher, and microwave of
over 0.90. Only the washing machine yields a lower value
of 0.80. For load estimation, the MAE values are presented,
with the highest error being just under six watts for the fridge.

While standard convolutional layers are useful for feature
extraction and classification, they do not preserve spatial
information. For example, it may be possible to detect a face
in an image, but it does not reveal where it was detected.
As such, and in the context of time series, it is relevant to
mention Recurrent Neural Networks (RNNs), as these are
designed to carry information through time.

Long-Short Term Memory (LSTM) networks [22] and
Gated Recurrent Units (GRU) [23] are among the several
existing types of RNN architectures. AsNILM itself is a time-
series problem, RNNs found themselves being used by NILM
researches, having yielded competitive results for both event
classification, and energy estimation.

In [10], the authors propose a solution based on RNNs,
more specifically LSTMs, to perform classification of appli-
ance consumption. The datasets used were the UK-DALE
and REDD. In this work, Kim et al. present results that are
at least double the performance of previous state-of-the-art
approaches, with accuracy values ranging from 76% to 96%
on houses 1 to 5 of the REDD dataset.

The work in [12] proposed a Convolutional Neural Net-
work (CNN) based solution for the load classification and
estimation of individual appliances. Kong et al. also make use
of the UK-DALE dataset and highlight the issue of missing
data. The results are reported using the F1-Score for classi-
fication and Energy Accuracy for load estimation. In terms
of performance, the authors present superior results against
other solutions, with values of F1-Score of over 0.85 and
Estimation Accuracy of over 0.88, except for the washer-
dryer of house 5, with 0.735.

In [15], the authors explore the classification of appliances
with random forest classifiers, fully-connected networks, and
CNNs using the PLAID dataset [30]. The observations on
the performance of several methods are analyzed at different
sampling rates. Peak performance was attained by a CNN
based architecture, with the F1-Score of 0.7619 at 1.2kHz.
Murray et al., in [11], attempt to apply transfer learn-

ing to the NILM problem. They propose two different net-
works based on CNNs and RNNs and evaluate them on
three datasets (REFIT, UK-DALE, and REDD). To assess
the transferability of the proposed networks, different sets
of data were used during training and testing. The reported
results vary from as little as 0.21 to 1 for the F1-score for
state estimation. As for energy estimation, the results range
from 44% and 82% in terms of estimation accuracy.

Nevertheless, even with proper deep network topology,
it can still be challenging to learn useful patterns and cor-
rectly perform designated tasks. One of the main challenges
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of NILM is the unbalanced nature of the problem. More
concretely, some appliances have frequent use and thus reveal
a more tractable load over time. Others are not utilized very
often, resulting in very few activations that algorithms can use
to learn their working patterns [12].

Considering the different appliance load distributions, it is
difficult to find a method to guide the learning of the various
appliances properly. This challenge is not exclusive to the
NILM problem, being very common in the forecasting of
household load demand [31], [32]. For example, in [32] the
authors used the pinball quantile loss function to train an
LSTM for load forecasting with evident performance gains
against the standard mean squared error (MSE) loss function.
The reported improvements are in the order of 2.19% to
7.52% for residential consumers and 3.79% to 25.80% for
small & medium enterprise consumers.

III. PB-NILM: PINBALL GUIDED NILM
Against this body of related work, this paper presents an in-
depth study on the applicability of the pinball loss function to
the NILM problem.

To this end, a custom deep neural network architecture
is trained guided by the PB loss function (PB-NILM). The
PB-NILM network is then put against the same architecture,
but guided by the MSE loss function. For additional bench-
marks, the PB-NILM is also put against three other deep net
architectures for NILM, all of which are individually trained
with the PB and MSE loss functions.

It is hypothesized that a standard loss function like MSE
will guide the training towards the mean or median of the
distribution, which is not the best option in the case of NILM,
as previously mentioned. Consequently, the disaggregation
results would not be consistent across appliances. In contrast,
using the PB loss function, it is possible to guide the learning
according to the underlying data by setting custom quantile
value. In other words, it is possible to set different penalties
(or losses) for under- and over-estimation errors based on the
appliances to disaggregate.

Software wise, Python 3.6.8 was used, along with Keras
[33] running on the Tensorflow backend [34]. We have also
installed, as a Tensorflow requirement, the cuDNN library for
GPU-accelerated calculations. Hardware wise, the computer
consisted of an Intel i7-8700k CPU, an NVIDIA 1080TI
graphics card and 64GB of RAM.

A. PROPOSED NETWORK ARCHITECTURE
The proposed deep neural network takes as input a time-series
of aggregated active power measurements (Pt0 ,Pt1 , . . . ,Ptn ).
It outputs the power of an individual appliance, the difference
between the aggregated load and the disaggregated appliance,
and the total predicted power, all at time (tn+1).
For this, the network is structured with two main branches

(Appliance and Difference) and a minor branch (Total). Each
branch is composed of a one-dimensional convolution layer,
followed by a GRU and a Fully-Connected layer. A Batch
Normalization layer follows each kernel operation [35].

TABLE 1. Architectures and respective implementations of the
benchmark deeep neural networks.

Batch Normalization is used this way to control the outputs at
the end of each layer that performs a kernel operation. It also
facilitates the use of larger gradients, helping to speed up the
network. This is, in turn, followed by a ReLU activation.

Dropout [36] was also employed to help prevent over-
fitting. The dropout action forces the network to exclude
learned connections and allows it not to focus on predominant
connections, hence exploring other ’pathways’ towards the
final output.

Figure 1 represents the proposed network and the flow
of the data. The network was structured to have three out-
puts in such a way that the outputs are ‘‘controlled’’ among
themselves. With Tensorflow, it was possible to set up in a
way that the Total branch consists of the sum of the Appli-
ance and Difference branches, in turn affecting their learn-
ing. The Appliance and Difference branches are not directly
connected.

B. BENCHMARK ARCHITECTURES
The PB-NILM is benchmarked against three different archi-
tectures. These, are summarized in Table 1.

The first benchmark algorithm is a simplified version of
the proposed PB-NILM architecture. More concretely, in this
version, only the appliance disaggregation branch is con-
sidered. The other two architectures were taken from the
NILMTK contrib repository [39]. These were selected based
on the similarity of purpose (seq2point) and architecture
(WindowGRU).
The seq2point network architecture involves using a chain

of five (5) convolutional layers, followed by two (2) fully
connected layers to provide an output. This network also
makes use of the dropout technique [36].

The WindowGRU network architecture is similar to the
proposed one, as it also contains a convolutional layer. Yet,
it is then followed by two (2) bidirectional GRU layers.
Similarly to the seq2point network, the WindowGRU is then
followed by two (2) fully connected layers to provide an
output. This network architecture uses dropout [36].

Note that to make the WindowGRU architecture com-
patible with the ‘‘cuDNN environment’’, the GRU layers
were replaced with the CuDNNGRU variant. Furthermore,
the implementation of the bi-directional layers follows the
cuDNN library requirements. Finally, each network was
adapted to support the PB loss function. This involved using
five dense layers in parallel, each representing a quantile
value.

C. LOSS FUNCTIONS
The proposed and benchmark networks were implemented
using two distinct loss functions, MSE, and PB.

48388 VOLUME 8, 2020



E. Gomes, L. Pereira: PB-NILM: Pinball Guided Deep NILM

FIGURE 1. Block diagram showing the proposed network architecture.

1) MEAN SQUARED ERROR
The MSE is a widely used metric that can also serve as
a loss function for training models dealing with regression
problems. This function is defined by Equation 1, where Yi
stands for the ground truth value, Ŷi stands for the predicted
value, and n denotes the number of steps.

MSE =
1
n

n∑
i=1

(Yi − Ŷi)
2

(1)

Due to the formulation of this function, it heavily penalizes
larger errors. As such, it might not be suited to analyze appli-
ances whose typical consumption patterns consist of sparse
activation with high consumption such as toasters or a kettle.
However, it is also easy to interpret and outputs a value in
the units of the original data. In other words, it is possible to
quantify the variance in the original measure (e.g., Watts for
active power, or Amperes for current).

2) PINBALL
This function tries to take into account the distribution of the
underlying data, an appliance in this case, and provide a more
accurate prediction for potentially more unusual patterns.
Retaking the kettle example, this function should be more
capable of representing the small number of consumption
events present in the entire dataset. The pinball function
defined by Equation 2, where τ represents the desired quan-
tile (a value between 0.01 and 0.99), and n represents the
number of points taken into consideration, which in this case
translates into the batch size.

pinball =
max(τ × (Yi − Ŷi), (τ − 1)× (Yi − Ŷi))

n
(2)

D. PB LOSS IMPLEMENTATION
The PB quantile loss function requires tuning for each appli-
ance through the τ value, i.e., the quantile to estimate. In this
work, it was opted to train a single network with the five τ
values (0.05, 0.25, 0.5, 0.75, and 0.95). This approach reduces

the training and testing efforts to only one network, and also
ensures that the body of data remains the same, thus enabling
a fair comparison between all the τ values.
With respect to the proposed architecture, it outputs the

following values: the appliance consumption, the remaining
consumption (i.e., total minus appliance consumption, and
the sum of these two. Therefore, the loss function was imple-
mented to accommodate these changes. Equation 3 presents
the PB loss formulation in PB-NILM.

loss =

∑n
i=1 loss(Ai)

n
+

∑n
i=1 loss(Di)

n
+

∑n
i=1 loss(Ti)

n
(3)

where loss(Ai) is the loss for appliance A, loss(Di) is the loss
for the difference between the aggregated consumption and
appliance A, and loss(Ti) is the loss of the total power. Finally,
i represents an individual quantile, and n is the number of
quantiles considered (five in this work).

As for the remaining architectures, since they are all single-
branch, the loss consists only of the first term in Equation 3.

IV. PERFORMANCE EVALUATION METHODOLOGY
This section presents the overall evaluation methodology uti-
lized in this work. More precisely, it describes the training
and testing dataset, the respective training and testing pro-
cedures, and a set of metrics developed explicitly for NILM
performance evaluation.

A. DATASET
All the presented deep neural networks were evaluated using
House 2 of the REFIT dataset [40]. It consists of twenty-
one (21) months of active power measurements for the whole
house and nine individual appliances. Due to some inconsis-
tencies in the dataset, some data pre-processing was required.
More concretely: 1) the data were resampled to 8 seconds
with interpolation to the nearest neighbor for missing data.
And 2) The aggregated consumption was set to be the maxi-
mum between the original aggregated data and the sum of the
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TABLE 2. List of appliances in the used dataset. % > 0 is the percentage
of the data greater than zero watts for each appliance over the entire
dataset.

appliances to guarantee that the amount of power resulting
from the sum of the individual loads is never higher than the
aggregated consumption.

Table 2 lists the individual appliances, and the % of data
points greater than zero Watts after data pre-processing.
As can be observed, there are considerable differences in
usage between devices. For example, while the Fridge-
Freezer is active most of the time, the usage periods of
appliances such as the Kettle are seldom. Appliances 6, 7 and
9were not considered for this paper as the performance across
all architectures for these devices was extremely poor. This
most likely results from a combination of very low usage and
low power consumption.

B. TRAINING AND TESTING
For training and testing, the data is divided into two con-
tiguous blocks, following a 70%-30% division, respectively.
The number of timesteps for the inputs of the network is
set to 40. This number represents about five minutes of data
in the selected dataset. EarlyStopping was employed to help
prevent the overfitting of themodels.ReduceLROnPlateuwas
also applied to have the model take smaller steps during the
training, thus potentially resulting in the discovery of new
minimum values for the loss function.

Related literature suggests that the performance of NILM
algorithms is consistently higher when disaggregating the
sum of known appliance-level signals instead of the real
aggregated consumption (i.e., as measured at the mains) [41],
[42]. Consequently, it was decided to train and evaluate the
resulting models considering the two possibilities: 1) against
the sum of the known individual loads (also referred to as
artificial aggregate), and 2) against the real aggregate data.

The former reflects a scenario in which the input of the
network does not have any noise. I.e., the ground-truth fully
explains the aggregated data. As for the latter, it represents
the real-world scenario, in which the ground-truth data only
partially explains the whole-house consumption.

C. PERFORMANCE METRICS
Many performance metrics have been proposed to evaluate
the performance of NILM algorithms [16], [43]. For example,
the works mentioned in the previous section used metrics
such as F1-Score,Mean Absolute Error (MAE), Root Mean-
Squared Error (RMSE), and Estimated Accuracy (EA).

In this work, we propose the Correctly Estimated Power
(CEP) metric. This metric translates into the amount of
correctly assigned power during the active periods of

energy consumption. Higher values indicate a better match of
assigned power. To further analyze the results of an algorithm,
other supplementary metrics are used and determine various
other effects, such as under and overestimation. The CEP is
defined in Equation 4:

CEP =


C + Cue + Coe

GT
, GT > 0

1.00, GT = 0
(4)

where C is the correctly identified power, i.e., when the
ground-truth and estimated power is the same. Note that in
the absence of power, CEP defaults to 1 by design, since
there should be no energy to explain. When this occurs,
we encourage further examination of the Oz metric, defined
ahead.

C =
∑

(Y == Ŷ )× Ŷ (5)

Cue is the correctly identified power when the estimated
power (ŷ) is smaller than the ground truth (gt). I.e., there is
under-estimation.

Cue =
∑

(Y > Ŷ )× Y (6)

Coe is the correctly identified power when the estimated
power is greater than the ground truth (i.e., over-estimation).

Coe =
∑

(Y < Ŷ )× Ŷ (7)

GT is the total power in the ground truth data.

GT =
∑

Y (8)

The CEP metric is supplemented by the OE and UE
metrics, where OE is the ratio of overestimated power, and
UE is the ratio of underestimated power. These metrics are
calculated using the values of overestimation, defined as O,
and underestimation, defined as U .

O =
∑

(Ŷ − Y ) (9)

U =
∑

(Y − Ŷ ) (10)

OE =


O
GT

, GT > 0

not applicable, otherwise
(11)

UE =
U
GT

(12)

Note that OE is only defined when there is consumption
in the ground-truth. To accommodate the situations where
there is no consumption in the ground-truth, the Oz metric
was defined as follows:

Oz =


O
GT

, Y = 0 & GT > 0∑
Ŷ
n
, GT = 0

(13)

Oz takes the value of theOE when the ground-truth is equal
to zero. In every other case, Oz translates into the average of
power that was predicted over the period when the ground-
truth was zero. We propose this metric as decoupled from the
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FIGURE 2. Energy over the week 2015-04-20 to 2015-04-26 on the two scenarios.

rest as to better analyze the results when there is no energy
to estimate, i.e., when an appliance is not consuming. This
metric is not limited in values since Oz can exceed 1.

V. RESULTS
The performance evaluation results are reported in two
steps. First, the performance of the proposed network is
presented individually; then, extensive benchmarks with the
three alternative architectures are provided. The performance
is reported for a week in the testing set - from 2015-04-
20 to 2015-04-26. An overview of the consumption during
this week is given in Figure 2.

For a more direct comparison with the MSE , only the
results for the best pinball are presented. To this end, the best
pinball was obtained by calculating the distance between the
vector Es given by Es = (CEP,OE,Oz,UE) and the vector Ep
with the perfect scores, given by Ep = (1, 0, 0, 0) [44], [45].
The pinball with the smallest distance was considered the
best. In case of ties, the highest pinball value was selected.
The distance is given by Equation 14.

d(Es, Ep) =

√√√√ n∑
i=1

(si − pi)2

=

√
(1− CEP)2 + OE2

+ Oz2 + UE2 (14)

A. PB-NILM ARCHITECTURE
For the proposed network evaluation, the metrics CEP, OE ,
Oz and UE are presented for each scenario (artificial and real
aggregated consumption) and loss function (PB and MSE).
The metrics were calculated per appliances for each day in
the testing set.

1) MSE: SUM OF INDIVIDUAL LOADS
The results for the MSE in the sum of individual loads are
presented in Table 3.

The Fridge is active over the entire week and achievesCEP
values of 0.93 and above. In terms of overestimation, it per-
forms adequately both in where ground-truth was present and
when it was not. The worst results are in the days 22 and 25,
where overestimation occurred in the order of 11% and 15%,
respectively.

The Washing Machine reports mixed values for CEP. The
days 20, 21, 23, and 25 present acceptable results, while days
22, 24, and 26 show an uncommon behavior. Particularly on
days 22 and 26, where there is no power on the ground-
truth values, but estimation took place anyway. On these
days, as shown by the Oz metric, the amount reported is an
average of the wrongly estimated power. Finally, on the day
24, the values obtained were the result of the poor quality of
the data - a consumption of two watts over the entire day -
and resulting in the Oz being the percentage of the estimated
against the ground-truth and outputting a result very different
from the rest.

The Dishwasher performed both well and consistently,
with CEP values of 0.89 and above, while the overestimation
was always between 0.01-0.02. In terms of Oz, the values
obtained are also considered good. They are at a maximum
of 0.07 and typically in the range of 0.01-0.04.

The Television Site is the overall most problematic appli-
ance - good values of CEP, OE , at the cost of very high
scores of Oz. This means that the network attributed power
to the appliance at the wrong time. This is particularly visible
on days 20 and 23, where almost all of the power is being
assigned to the moments where no consumption occurred.

The Microwave performs poorly, with CEP values almost
exclusively under 0.6. Combined with the high OE and
Oz make this appliance, together with the Television Site,
the worst-performing loads.

The Kettle is a very consistent appliance, with high CEP
values, a small amount of overestimation, and almost no Oz.
This means that the power estimated by the network is mostly
correct, both in the time and energy domains.
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TABLE 3. Results of disaggregation using the MSE loss on the Sum of Loads scenario.

TABLE 4. Results of disaggregation using the Pinball Quantile loss on the Sum of Loads scenario.

Overall, when using the MSE loss function on the sum
of the individual loads, acceptable results are achieved. The
poor results for the Television Site and Microwave could
result from a combination of the shallow representation of the
appliance on the dataset and the low consumption associated
with it. In contrast, while the Kettle is also underrepresented,
it shows higher consumption peaks (see Table 2).

2) PINBALL: SUM OF INDIVIDUAL LOADS
The results for the pinball in the sum of individual loads are
presented in Table 4.

As can be observed, the overall performance of the trained
models is positive. The results for the Fridge-Freezer remain
consistently good, with CEP values of 0.96-0.97. This appli-
ance also yields very few overestimation both in terms ofOE ,
and Oz.

TheWashingMachine performs very well using the pinball
quantile loss function, with an exception in day 24. Still,
this happens due to noise in the ground-truth data, which
shows only two (2) Watts of consumption during the day.
Furthermore, the absence of Oz is a critical advantage over
the MSE loss, since the ground-truth values are very likely
the result of a data acquisition error.
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TABLE 5. Results of disaggregation using the MSE loss on the Aggregate scenario.

TheDishwasher presents very high values ofCEP, together
with lowOE andOz. With the pinball quantile loss, this is the
highest-performing appliance. Overall, this appliance is fairly
consistent over the entire week.

With the pinball quantile loss, the Television Site performs
remarkably better when compared with its MSE counterpart,
with overall CEP values much higher and lower OE and Oz.
The Kettle remains a very good appliance, with consistent

values ofCEP throughout the week. There are small increases
in the OE values against the MSE loss. However, the overall
Oz is lower than in the MSE loss.

3) MSE: AGGREGATE CONSUMPTION
The results for the MSE in the aggregate consumption are
presented in Table 5.

Against the aggregate consumption, the CEP values are
overall worse than on the Sum of total loads scenario. The
tendency on the aggregate scenario is to report lower CEP,
as well as higher OE and Oz.
The Fridge reflects the overall characteristics of the sce-

nario, with lower values of CEP, although consistent - rang-
ing from 0.59 to 0.66. The results for OE show a significant
increase, especially on day 25, with a value of 0.40.

The Washing Machine follows the same trend, with values
of CEP showing a decrease relative to the sum of loads
scenario, with a slight increase of OE and a very significant
rise in Oz. Notably, on day 24, this appliance had only two
watts to be predicted, resulting in an abnormally large value
of Oz.

The Dishwasher was less impacted by the scenario settings
and presented values of CEP in the range of 0.64 to 0.78.
This comes with little overestimation, although higher Oz is
reported.

The Television Site, one of the most problematic in the
previous scenario, continues to underperform. This is shown
by a very low value of CEP, coupled with very high values
of Oz.
The Microwave, like Television Site, reflects drastic

changes in the scenario. It reports lower CEP and higher OE
and Oz, especially on the days 22 and 25.

While the Kettle decreased the performance with respect
to the CEP metric, the results it still acceptable and show a
minimal increase of OE . However, Oz is now considerably
higher. Overall this is the best performing appliance using the
MSE loss.

4) PINBALL: AGGREGATE CONSUMPTION
Against the aggregate consumption, the pinball quantile loss
function remains a solid alternative to the standard MSE
loss.

The results for the Fridge-Freezer remain reasonably high,
with CEP values of 0.75 to 0.88. The overestimation, how-
ever, increased as well. The values of OE roughly follow the
same increase as in the MSE case.

TheWashingMachine is an average appliance, with a wide
range of CEP values. One key advantage against the MSE
loss, however, is that on day 24, there was no consump-
tion predicted - more in line with the ground-truth value of
2 Watts.

The Dishwasher yields high values ofCEP in this scenario.
Yet, this comes with a caveat - higher OE and Oz as well.
The Television Site continues to display poor values of

CEP. The notable exception is on day 24 when the quantile
0.95 was selected. This results in a very high value for CEP.
Yet, this increase arrives at the cost of an increase of OE ,
and Oz.
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TABLE 6. Results of disaggregation using the Pinball Quantile loss on the Aggregate scenario.

TABLE 7. Median of best results for each appliance over all network architectures - sum of loads scenario.

The Microwave reports low values of CEP, as well as
high values of OE and Oz. An interesting result was the
selection of the 0.75 quantile over the entire week, suggesting
this quantile may be very well suited for this appliance in
particular.

The Kettle is the best performing appliance in this scenario
utilizing the pinball quantile loss. It reports consistent values
of CEP (≥ 0.88), as well as minimal increases in theOE , and
Oz metrics.

B. BENCHMARKS
Two different benchmarks are provided. The first compares
the overall performance of the four disaggregation architec-
tures, whereas the second compares the performance of the
loss functions.

Regarding the former, the median of the best distances
over the testing week is computed for each appliance. This
is done for each scenario, for a total of 12 comparisons
per architecture (i.e., six appliances and two loss functions).

As for the latter, the distances between the best PB and the
MSE were compared. This was done for each scenario, for
a total of 42 comparisons (i.e., six appliances across seven
days). In case of ties, i.e., the same distance between the PB
and MSE, this information is labelled as such.

1) ARCHITECTURES: PROPOSED VS. OTHERS
The performances of the four networks architectures evalu-
ated in this work are presented in Tables 7 and 8. For each
appliance, the loss function with the shortest distance across
the four architectures is shown on a grey background. The
overall best loss function is highlighted in bold.

Overall, the results show the superior performance of
the proposed architecture when using the PB loss function.
In fact, out of 48 comparisons (6 appliances x 4 networks
x 2 scenarios), it shows better performance on 45 occasions
(93.75%). Furthermore, it is important to remark that on the
other three circumstances, the winning architecture is also
guided by the PB loss function.
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TABLE 8. Median of best results for each appliance over all network architectures - aggregate scenario.

Examining the average distance of the appliances in each
network, it can be observed that in both scenarios, the most
effective networks are the proposed one and its single branch
version, independently of the employed loss function.

Another relevant aspect of these two networks is that they
are capable of learning all of the appliances. This does not
happen on the other two alternatives.More precisely, theWin-
dowGRU did not manage to learn the Microwave indepen-
dently of the loss function and the disaggregation scenario.
Furthermore, this architecture also did not manage to learn a
representation for the Kettle in the aggregated scenario with
the PB loss. As for the seq2point architecture, it did not
manage to disaggregate the microwave when using the PB
loss in both disaggregation scenarios.

2) LOSS FUNCTIONS: PB VS. MSE
To further understand the differences in performance between
the PB and the MSE, Figure 3 shows the distribution of the
winning across the four networks in the two studied scenarios.
Note that each bar represents 41 comparisons, resulting from
six appliances and seven days.

As it can be observed there is a prevalence of wins for the
PB loss across all the networks. However, the difference is not
so evident in the seq2point and WindowGRU architectures.
This happens mostly due to the poor performance of the PB
loss function concerning the Kettle and the Television on the
WindowGRU, and the Microwave on the seq2point.

Examining the distribution of the losses in more detail,
it is shown that on the sum of loads scenario, the MSE loss
achieved zero wins in the proposed network, nine on the
single branch version, 11 on the seq2point, and seven on the
WindowGRU. On the aggregate scenario, the MSE achieved
two wins on the proposed network, ten on the single branch
version, ten on the seq2point, and 14 on the WindowGRU.
There are also two ties in the seq2point, and seven on the
WindowGRU, in both scenarios.

Regarding the distribution of the winning pinball loss
quantiles, the most prominent one is the 0.75, with 46% of
the wins in the sum of loads, and 55% on the real aggregate
scenario. Another prominent quantile is 0.5. However, this is

only true in the artificial aggregate scenario, where it wins
26% of the time.

On the other extreme are the smaller quantiles, 0.05 and
0.25, with less than 5% of wins independently of the scenario.
Finally, it is also noticeable the presence of the 0.95 quantile
across the four networks in the real-aggregated scenario (10%
of wins), contrasting the artificial aggregate scenario where
the 0.95 quantile only wins in one occasion in the seq2point
architecture.

VI. DISCUSSION
Overall, the results presented in this paper show the superior
performance of the proposed network, in particular of the
pinball guided version that achieved nine wins out of 12 in
the benchmarks.

Our results also show that despite much superior perfor-
mance of the proposed architecture guided by the PB loss,
both the MSE and PB loss functions perform adequately
against the sum of loads. Yet, the same does not hold against
the aggregated consumption signal that shows noticeable
losses in performance.

A noticeable appliance that suffers from the change in sce-
nario is the Fridge-Freezer that sees increases in the distance
to the perfect score from less than 0.09 to over 0.4 across the
four networks when guided by the PB loss function (from
0.11 to 0.62 in the MSE). Another appliance that suffered
greatly was the Dishwasher, with the median distance to
perfect score going from as little as 0.04 up to 0.35 when
guided by the PB (0.12 to 0.56 in the MSE).

Interestingly, the Kettle is the only appliance that has
comparable performances in the two scenarios (note that the
WindowGRU does not learn the Kettle in the PB guided
version). A possible explanation for this result is much higher
instantaneous consumption of this appliance when compared
to the others, which makes it less susceptible to the increase
in power in the real aggregate scenario.

Concerning loss functions, the results show that the PB
loss function is very competitive independently of the deep
network architecture. Overall, the PB loss is the winner in
about 80% of the comparisons. Again here, there are some
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FIGURE 3. Loss functions with the best distance across network architectures and scenarios: left (sum of loads), right (real aggregate).

differences between the two scenarios. The PB wins 84% of
the cases in the sum of loads and 79% in the real aggregate.
Another noticeable difference is the fact that the 0.5 quan-
tile is only predominant in the artificial aggregate scenario.
Instead, in the real aggregate scenario, going for higher
quantiles (in this case, 0.75 and 0.95) will yield superior
performances.

On the other hand, smaller quantiles (0.05 and 0.25) have a
meager number of wins independently of the scenario. These
quantiles only win when the appliances are not consuming
any energy or are consuming very little. For example, in the
proposed architecture, the 0.25 quantile wins on the three
days that the washing machine does not consume any power.

Ultimately, higher quantiles can be considered as a more
liberal approach to power disaggregation, whereas low quan-
tiles are more conservative in this regard. With the pinball
loss formulation, if the predicted values are much higher than
the ground-truth, bigger quantiles will penalize less the error
(I.e., incentives overestimation). The opposite is also true.
I.e., when the ground-truth values are higher than the pre-
dictions, lower quantile values will provide lesser penalties
in regards to the loss (i.e., incentives underestimation). Thus,
to consider all the options, it is fundamental to have quantiles
across the entire range of values. In fact, our results seem to
suggest that quantiles should be selected between 0.25 and
0.95 to have the best performance.

To conclude, it is also evident from our results that evalu-
ating the performance of NILM solutions in the sum of loads
will yield overly optimistic results. Furthermore, the perfor-
mance in the ‘‘denoised’’ scenario will likely be very far from
that obtained when testing in the real-world scenario, which
will ultimately make benchmarks less meaningful. This result
is in line with the findings from [42] that stress the need
to avoid evaluations on the sum of loads instead of the real
aggregated data.

VII. CONCLUSION AND FUTURE WORK DIRECTIONS
This paper proposes a deep neural network architecture,
an alternative loss function to the NILM problem, and a set
of metrics for NILM performance evaluation.

Overall, our results show that the proposed network, when
guided by the PB loss function, yields disaggregation perfor-
mance. Furthermore, the benchmark results also show that the
PB loss function can increase the performance of two state-
of-the-art algorithms implemented in the latest release of
NILM Toolkit. Ultimately, it is clear the PB loss function has
its room in NILM research, and therefore should be further
explored by this community.

Furthermore, a great deal of the NILM problem lies in
the uncertainty and constant variation associated with the
data and the respective usage patterns. Thus, we argue that
given the flexibility of the PB quantile loss function, that is,
the ability to specify the τ value in regards to the desired
pattern makes it so that it has the edge over other conventional
approaches.

While the proposed network performs reasonably well in
most cases, we acknowledge that it may be further opti-
mized and tuned for increased performance. One immediate
improvement would be concerning the temporal processing
by tuning the timesteps for each appliance type (or category).
In terms of changes to the architecture, another possibility
would be to improve the feature extraction step, by making
use of auto-encoders [46].

Concerning the loss functions, we report superior results
using the pinball quantile loss on both scenarios. Yet, in the
current work, only a limited number of quantile values were
explored. Consequently, future work should investigate the
possibility of finding the recommended quantiles for each
appliance type or category. This, of course, should be per-
formed across multiple datasets such that it is possible to
generalize the findings.

This work also proposes a set of metrics for assessing
the NILM performance concerning energy estimation. Alto-
gether, these metrics contribute to the interpretability of
the results since they can be combined to provide different
insights into the results. Potential uses include highlighting
faults in the pipeline, and finding opportunities to fine-tune
the algorithms based on the application needs. For example,
in a scenario where over-estimation is a problem, the algo-
rithm should be modified such that the OE metric reports
lower values even if the CEP is penalized.
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Yet, one limitation of the CEP metric is that it gives the
same importance to the three components. Thus, future work
should also explore the definition of weighted versions of this
metric.

Another limitation of CEP is the fact that it only reports
the performance concerning the success rate. As such,
proper conclusions must take into account other metrics
such as OE and Oz. Future work regarding the evalua-
tion of the metric suite lies in providing feedback in a
more summarised fashion. Consequently, future work with
this respect should look at expanding this metric such that
it is capable of reporting by itself the most important
trade-offs.

During this work, some issues with the data were identi-
fied, which may have negatively affected the performance of
the proposed networks. These included temporal shifts and
differences in power consumption between aggregated and
ground-truth data. For example, it was identified that in some
portions of the dataset, the Fridge-Freezer has a consumption
of 80 Watts in the ground-truth and 70 Watts in the aggre-
gated signal. Ultimately, this may help explain the consis-
tent over-estimation of the fridge in the second evaluation
scenario.

APPENDIX: SUPPLEMENTARY MATERIAL
For replication purposes, we are releasing the individual
results obtained in the different models trained and tested in
this work. The results of the benchmarks that were conducted
across the four architectures are also provided. The data is
made available through the Open Science Framework under
https://osf.io/x6qz7/ (DOI: 10.17605/OSF.IO/X6QZ7).
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