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Abstract

In today’s society, a current concern is to mitigate the risks of global
climate change. Throughout the years there have been several initiatives
to achieve more sustainable energy distribution in buildings. In this work, a
new methodology is proposed for identifying appliance consumption patterns
in buildings. It consists of, at first, conducting a seasonality analysis based
on the Auto-Correlation Function for detecting the different appliance use
patterns that arise in a given time window. Then, it is conducted a Prob-
ability Distribution Analysis based on the auto-correlation results and the
calculation of an informative measure to select the prevailing consumption
pattern. The methodology enables to distinguish between different use pat-
terns for a given appliance for each building at specific time intervals, e.g.,
the seasons of the year. For the purpose of illustration, the methodology
is applied to consumption data of four appliances selected from a domestic
energy consumption dataset (REFIT) over one year. The results provide
several insights on how a given appliance use evolves throughout the seasons
for each household, and also highlighting use similarity for different appli-
ances across the seasons. These results would be, otherwise, hidden away,
and would require an individual analysis of consumption patterns of each
appliance. Consequently, the methodology provides a consistent mechanism
to identify different user profiles.
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1. Introduction

A continuous reduction of greenhouse gas emissions is a growing need for
achieving a more sustainable worldwide energy distribution. Throughout the
years, there have been several initiatives to discuss the impact of improper
energy usage. In [1], the authors emphasize that energy efficiency concern-
ing the domestic sector should be improved to lower emissions and mitigate
the risks of global climate change. To this end, a more detailed analysis of
household electricity consumption should be employed. Such analysis should
take into account a complex interaction of socio-economic, dwelling, and
appliance-related factors, which ultimately leads to an increase in consump-
tion volatility among users and households [1]. In particular, seasonal varia-
tion throughout the year appears to impact household consumption [2, 3].

Smart-meters are thus a cornerstone for the realization of more sustain-
able electric power grids due to their ability to transfer consumption informa-
tion to remote data processing systems, which enables the creation of novel
smart-meter data-based services that go beyond the traditional bill at the end
of the month [4, 5, 6]. Many countries have been investing in the installation
of smart grids in distribution networks. In [7] it is indicated that electric
companies in the US aimed at installing around 65 million smart meters by
2015 (covering more than 50% of households) and around 90 million by 2020.
Also, European Union countries aimed to replace at least 80% of electricity
meters with smart meters by 2020, representing close to 200 million smart
meters.

Several research initiatives exist to explore the potential of smart-meter
data for both the grid operators and the end-consumers, as highlighted by
some literature reviews on the topic. For example, in [8], a review of smart-
meter data analytics from the utility point of view is presented. The authors
highlighted applications such as load forecasting, customer characterization,
outage management, and demand response implementation. In contrast, in
[6], the authors review the potential of smart-meter data from a consumer-
centric perspective. Potential applications include user feedback, anomaly
detection, and participation in demand-side flexibility programs.

Interestingly, even though seasonality is considered in many of the works,
to the best of our knowledge, it is not possible to find any literature proposing
data analytics methods to study seasonality in smart-meter data. Instead,
the effects of seasonality are handled differently depending on the spatial
dimension of the data. On the one hand, when it comes to data analytics
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on top of aggregated data, the classic approach is to identify and remove
the seasonality component in a pre-processing stage and add it back on a
post-processing stage [9]. On the other hand, when conducting data ana-
lytics on individual data, some researchers find it helpful to include seasonal
information as input features [10, 11, 12], while others perform data analytics
individually for each season [13].

1.1. Auto-Correlation Function for Seasonality Identification
The Auto-Correlation Function (ACF) [14] is a widely used technique

to identify seasonality in time series data, with recent applications in a vast
range of fields, such as energy consumption [15], financial markets [16], mete-
orology [17] and geo-spatial studies [18]. In broad terms, the ACF measures
the correlation between the time series with itself at different time units
(lags). For a time series yt, it is defined as:

ρk = Cor(yt, yt−k) =
Cov(yt, yt−1)√
V ar(yt)V ar(yt−k)

, k = 1, 2, . . . (1)

where the k is the gap considered between observations. Thus, ρ1 shows how
the y values which are one lag apart (i.e., successive values) relate to each
other, ρ2 indicates how the y values, which are two lags apart are related to
each other and so on. Spikes, i.e., values close to 1 or −1 indicate a high
positive or negative auto-correlation, and values close to 0 indicate lack of
auto-correlation.

For illustration purposes, Figure 1 shows two weeks of consumption from
a tumble dryer at one minute intervals, and the respective ACF. As it can
be observed, consumption peaks occur around days 21 to 23 (June), 27 to
30 (June), and 4 to 6 (July). These dependencies are detected by the Auto-
Correlation Plot (ACP), and are represented by the spikes at lags 0 to 20, 000
(≈ 0− 2 days), 40, 000 to 70, 000 (≈ 4− 8 days), and 120, 000 (≈ 14 days).

One limitation of the ACF, however, is that seasonality assessments suffer
from the observer bias [19] since they rely on visual inspection of the gen-
erated ACP. Ultimately, different interpretations of the ACP would lead to
the detection of inaccurate seasonal periods, mainly if the data granularity
is sufficiently large.

1.2. Applications of the Auto-Correlation Function to Smart-meter Data
The ACF has found its applications mostly in load forecasting, in some

cases being the standard pre-processing technique to identify seasonality in
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Figure 1: Consumption data for the tumble dryer from household 5 for a time window
ranging from 2014-06-21 to 2014-07-20 (left) and the corresponding ACF plots (right).
Data granularity is set at 1minute. The ACF prominent peaks for τ = 0.05 are represented
by blue dots.

the consumption data. In [20], autocorrelation analysis is employed in load
forecasting, in a process that is also known as feature selection in the context
of data analytics. To this end, the time-series features with larger auto-
correlation values are selected for load forecasting, while the redundant or
irrelevant features are removed. This method is considered, in a similar
fashion, in [21, 22, 23].

In addition, in other cases autocorrelation analysis was incorporated into
load forecasting models. In [24], the consideration of forecast error auto-
correlation is suggested when reconciling forecasts in a temporal hierarchy,
which improves forecast accuracy. In [25], the authors proposed a hybrid
model that combines the ACF with Least Squares Support Vector Machine,
whose experimental results improve forecast accuracy compared to bench-
mark approaches. In [26], the employed forecasting models for short-term
prediction of electricity demand include an adjustment term for dealing with
the first-order autocorrelation.

As for individual appliance studies in particular, applications of the ACF
are very scarce, with less than a handful of works. In [27, 28], the ACF is
used for detecting periodicity and load patterns in Hilbert transforms of pulse
waveforms from energy consumption data. The authors emphasized that sta-
tistical tools, particularly the ACF, provide valuable information to end-use
disaggregation, such as level of demand and duty cycles of appliances for a
given household and specific season. In [29], the temporal structure of load
demand time-series is analyzed via first-order auto-correlation to compare
energy consumption between commercial and residential buildings. Among
other results, the results highlight that commercial buildings have more evi-
dent seasonal patterns than residential ones due to time-scheduled equipment
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usage versus people’s habits, which are likely to change among households.
In [13], a preliminary study was conducted to understand whether different
ACF patterns affect the disaggregation performance of NILM algorithms.
The ACF was used for detecting dishwasher consumption patterns across
households from the REFIT dataset. More precisely, it was intended to as-
sess to what extent similarity among dishwasher consumption patterns can
affect the performance of Non-Intrusive Load Monitoring (NILM) algorithms.

1.3. Research Contributions and Paper Organization
Noticeably, all the surveyed works relied on visual inspection of the ACP.

In fact, to the best of our knowledge, there is no published literature aiming
at developing alternatives to visual inspection. It seems that, although the
characteristics of autocorrelation are widely acknowledged as part of time se-
ries modelling in a variety of research fields, the improvement of its inspection
methods has often been ignored or neglected, which may be an explanation
for the ACP still being mostly based on visual inspection. In fact, in [30]
it is noted that autocorrelation is a well-known phenomenon that has been
largely neglected in behavioral ecology, and if not accounted accordingly can
lead to biased results. In other fields, such as data privacy, it is also noted
the lack of research on autocorrelation analysis [31].

The present work intends to provide a new procedure that formalizes the
ACF pattern analysis, particularly in the context of appliance consumption
data. The new proposed methodology directly assesses, in any given case,
whether the corresponding ACF shows a more frequent usage of an appliance
in comparison to a moderated or sporadic use. To reduce the effects of the
observer bias, the methodology does not rely on the visual inspection of the
ACP. Instead, the seasonality is assessed by using an analytical procedure
that includes a probability distribution analysis based on the extraction of
consumption behaviors from the ACP and the calculation of an informative
measure to identify the prevailing pattern. To illustrate the effectiveness of
the methodology, a case study is presented where the methodology is applied
to study individual appliance consumption on the REFIT [32] public dataset.

The remainder of this paper is structured as follows. Section 2 provides a
stepwise description of the proposed methodology. In Section 3 the method-
ology application is illustrated with a case study to a real-world energy con-
sumption dataset, whose results and discussions are addressed in Section 4.
Finally, the main conclusions, limitations, and an outlook on future work are
presented in Section 5.
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2. Methods

The proposed methodology is based on the stepwise procedure depicted
in the diagram in Figure 2. The first step consists of conducting a seasonality
analysis of the time-series (for a given appliance being considered) at a sliding
window level (Section 2.1). Then, the Energy Concentration Coefficient (C)
is used for assessing whether, for a given sliding window, there is a consump-
tion pattern that prevails among the other possible patterns (Section 2.2).
Lastly, the analysis of the assigned patterns for each sliding window allows
the identification of global usage profiles for the given appliance (Section 2.3).

Figure 2: Proposed methodology steps.

2.1. Sliding Window Analysis of Time-series
Sliding windows have been considered in a variety of areas with simi-

lar purposes. In financial time series analysis, it is commonly assumed that
model parameters’ constancy over time is not realistic due to the volatility of
financial markets. To assess the stability of a model, the parameter estimates
are computed over a sliding window of fixed size through the sample [33, 34].
The sliding window approach was also incorporated in model procedures
for predicting the relationship between renewable energy and industrial pro-
duction [35], and economic growth [36]. In fields of research, such as NILM,
sliding windows have been considered with the purpose of improving the per-
formance of event detection, instead of considering the entire time horizon,
e.g., [37, 38]. Since ACF analysis roughly consists on the detection of spikes
in the ACP, the sliding window approach seems adequate in comparison to
the whole time window analysis at once.

In previous works, the use of overlapping sliding windows was also sug-
gested. In [39] overlapping sliding windows are used to improve the accuracy
of human activity recognition systems. In [40] this strategy is used to im-
prove anomaly detection performance in energy consumption datasets. Since
overlap seems to improve model or algorithmic performance in comparison
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with non-overlap, an overlapping sliding window approach is useful to ana-
lyze auto-correlation in time windows that comprise a larger number of ob-
servations, such as seasonal and yearly data. Therefore, overlapping sliding
windows are used in this work.

After dividing a time window into sliding windows, the following step
is to analyze the corresponding ACFs. Notice that if the time series is not
moderately large, the sliding windows will possibly contain a small number of
observations (also depending on the chosen granularity). The most significant
ACF peaks are obtained by exploring the concept of topographic prominence.
This step is inspired by the real-world problem of mountain detection [41].
In simple terms, a prominent ACF peak occurs when the vertical distance
between the peak and lowest contour line is greater than or equal to a given
threshold, denoted by τ . In Figure 3, the prominent ACF peaks for τ = 0.05
are depicted for the ACF for the tumble dryer from household 5 for sliding
window 1 during summer.

Based on the prominent ACF peaks for each sliding window, a differ-
ence set is obtained by calculating the difference between consecutive lags of
prominent ACF peaks. More precisely, let each difference set be represented
by a variable Xi, i = 1, . . . , ns whose realizations are defined to be the re-
spective differences, where ns is the number of difference sets, also sliding
windows, in which the larger interval was divided. For the sliding window in
Figure 3, the difference set, ω, is:

ω = {24, 1932, 4714, 6557, 9314, 11156, 15876,

49588, 51634, 52842, 54230, 58974, 60719, 62798, 65425, 68708, 120501}

Sliding windows with a number of prominent peaks ≤ 1 are discarded
since at least 2 peaks are required for building up sets of differences.

2.2. Identification of Relevant Differences
In this step, the objective is to identify which differences are the most

frequent on a difference set. For this purpose, it is proposed the calculation
of the Probability Mass Function (PMF).

First, it is important to remark that for a particular sliding window,
the respective difference set may contain differences that are very close in
value, which in practice does not change usage interpretation. For such
cases, it is adequate to aggregate the differences by probability, choosing for
the representation of the aggregated differences, e.g., the lowest difference
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Figure 3: The ACF for the tumble dryer from household 5 for a sliding window - ranging
from 2014-06-21 to 2014-07-05. The ACF prominent peaks for τ = 0.05 are represented
by blue circles.

value. As such, an aggregation range, denoted herein by ∆, is defined, which
should be selected according to the experiment requirements.

To automatically detect if there is, at least, one significant difference
on a difference set, it is proposed the comparison between the respective
PMF (pXi) and the uniform PMF (pUi), in the same domain, through a
quantitative measure. By considering PMFs, it is intended to quantify the
frequency of different correlations (similarity behaviours) using probability
and then compare with the uniform PMF in the same domain of similarity
behaviours.

As an illustration, Figure 4 depicts the PMF that is obtained for a sliding
window (2014-06-21 to 2014-07-05) for the tumble dryer from household 5.
The uniform PMF in the same domain is also computed. It can be seen that
the most frequent difference value is 2079, with a probability of 0.375.

For comparison between pXi
and pUi

, the quantitative measure that was
chosen is based on the Kullback-Leibler divergence (K-L divergence) [42],
since K-L divergence accesses information loss from replacing the original
distribution p for a sliding window with an alternative distribution q. The
KL-divergence between any well-defined PMFs p and q is given by Equa-
tion (2):

DKL(p||q) =
N∑
i=1

p(xi) log
p(xi)

q(xi)
, i = 1, . . . , N (2)
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Figure 4: The ACF for the tumble dryer from household 5 for a sliding window - ranging
from 2014-06-21 to 2014-07-05. The ACF prominent peaks for τ = 0.05 are represented by
blue dots (left). The PMF is obtained along with the uniform PMF in the same domain
(right).

In this case, the alternative distribution is the uniform PMF (pU) defined
in the same domain. The greater the K-L divergence, the more non-uniform
is p inside a sliding window since more extra information would be necessary
if pU were to be selected instead. In practice, it is this property that enables
to assess the similarity or dissimilarity between p and pU . More precisely,
when there is similarity the extra information is small.

However, it is important to stress that the K-L divergence is not a dis-
tance measure since the symmetry and triangle inequality properties are not
satisfied [42]. It is, instead, a measure of entropy increase when the true
distribution is approximated by an alternative distribution [43] Since the
K-L divergence does not possess a bounded scale, it becomes difficult to
make meaningful comparisons. Therefore, the quantitative measure which is
employed is a normalized version of the K-L divergence [44], known as the
Entropy Coefficient Concentration (C), given by Equation (3):

C(p, pU) =
DKL(p||pU)

H(p) +DKL(p||pU)
(3)

where H(p) = −
∑N

i=1 p(xi) log p(xi), i = 1, . . . , N , is the entropy for PMF
p. Note that the previous considerations on the K-L divergence also hold for
C.

In this work, it is considered that the sliding windows in which C ≤ 0.1
are not significant and therefore removed, since the proportion of loss is
small. To illustrate the calculation of C in each sliding window, consider the
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PMFs p and pU in Figure 4. Then, both the entropy and KL-divergence are
calculated considering the binary logarithm (base 2):

H(p) = 3/2 +
3 log(8/3)

8 log(2)
+

3 log(16/3)

16 log(2)
bits (4)

DKL(p||pU) = − log(8/7)

4 log(2)
+

3 log(21/16)

16 log(2)
− 3 log(16/7)

16 log(2)
+

3 log(21/8)

8 log(2)
bits

(5)

By Equation (3) we obtain that C(p, pU) ≈ 0.11, that is, on average it would
require approximately 11% extra bits with respect to the original distribution.

As an illustration of the sliding window analysis, in Figure 5 the most
frequent difference, probability and C are obtained for each sliding window
in the time window ranging from 2014-06-21 to 2014-09-21, concerning the
tumble dryer consumption data from household 5. It can be seen that sliding
windows 1 and 2 have similar most frequent differences, as well as for sliding
windows 3 and 4.

Figure 5: Sliding window analysis for the tumble dryer from household 5 in the time
window ranging from 2014-06-21 to 2014-09-21. The respective most frequent differences,
probabilities and C are obtained.

2.3. Pattern Definition
At this point, for a specified appliance data, a given time window was

divided into sliding windows, and for each sliding window, it was obtained
the most frequent difference (which can be denoted by D), the respective
probability, and entropy concentration coefficient C.

It is interesting to analyze how the D for each sliding window evolves
throughout the seasons to identify possible different usage profiles. For in-
stance, if for most sliding windows of a season the Ds are similar, denote it
by a set D∗ of Ds, it indicates that the differences in D∗ prevail over the
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remaining Ds for a season. Thus, it suggests that there is a usage pattern
that prevails in the season since the appliance is often used at multiples of
lags in D∗.

According to the previous considerations, it is adequate to define a pattern
criteria to distinguish between different types of usage for a given appliance.
Let T denote the number of power samples in a day. Then, for k days there
is a total of T × k power samples. For instance, for a given appliance the
following frequency usage patterns can be defined

• High frequency (H): most differences d < T − δ1.

• Medium frequency (M): most differences T − δ1 < d < 3T − δ2.

• Low frequency (L): most differences d > 3T − δ2.

where δ1 and δ2 are constants that smooth the boundaries between different
patterns. It is adequate to smooth boundaries between H, M, and L since
a given appliance is not necessarily activated at the same time when it is
used. Although such fluctuations may occur, it does not change the usage
frequency. The smoothers should be defined to accommodate those possible
fluctuations. Notice that the choice of previous criteria is flexible. The
researcher should choose the extremes that best fit the experiment. Also, it
is adequate to compare usage frequencies with T since the time units in both
cases are the same, which enables to define patterns, e.g., bi-daily, daily, or
once every two days, with respect to T . From the previous criteria, other
frequency patterns originate from the mixture of at least two of them, such
as

• High-medium (H/M) frequency: a draw between H and M.

• Medium-low (M/L) frequency: a draw between M and L.

• High-low (H/L) frequency: a draw between H and L.

• High-medium-low (H/M/L) frequency: a draw between H, M, and L.

• No pattern: zero frequency for both H, M, and L.

In the table presented in Figure 5, since the granularity is set at 1 minute,
then T = 24 × 60 × 1 = 1440. It can be seen that the difference values are
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around 2000, thus for household 5 the predominant usage for the tumble dryer
was mostly at multiples of 2000 and 2500 lags approximately. According to
the previous criteria, medium frequency usage predominates. However, note
that there are only significant ACF prominent peaks for 4 sliding windows
since for the remaining no pattern was detected. Thus, the significant corre-
lations are related to medium frequency, otherwise no pattern was detected.

3. Case Study Specification

In this section, it is described a case study to illustrate the applicability of
the proposed methodology to a real-world dataset. The case study considers
individual appliance data, and it is intended to show how the methodology
can be used for analyzing a given appliance consumption over time across
different households.

3.1. Dataset
The household appliance consumption data from the REFIT dataset [32]

is used. REFIT is composed of electrical consumption measurements, both
aggregate, and appliance levels from 20 households located in the UK. The
data are originally timestamped and sampled at 8 second intervals. Note
that the households are numbered from 1 − 13 and 15 − 21, which is the
naming convention that we also use in this work.

3.1.1. Selected Appliances
In this case study, four appliances are considered, namely, Washing Ma-

chine (WM), Dishwasher (DW), Kettle (KT), and Microwave (MW).
As indicated in [45], appliance consumption can be influenced by hous-

ing type, household characteristics, and appliance ownership. Furthermore,
appliances can be categorized according to their pattern of use [46]. For
instance, the WM, DW, and MW are standby appliances, which have 3
modes of operation: in use, on standby mode, or switched off. A KT or
a Toaster (TT), on the other hand, are active appliances, which can be ac-
tively switched ON/OFF by the householders and do not have a standby
mode. Cold appliances, such as the Fridge (FRI) and Freezer (FRZ), are in
continuous use, with the power consumption cycling between zero and a set
of power levels that is under thermostatic control. As such, cold appliances
were not chosen for usage pattern analysis.
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• WM: In [47] it is indicated that the intensity of WM usage increases
when the number of householders increases. Since WM can largely
contribute to significant water waste, efficient changes in usage can
lead to notable water and electricity saving. In [48] it is suggested to
run the WM on full loads. Some studies reported WM consumption
patterns. In [49], it was noticed that users were prone to use WM
only on a particular weekday. In [50] the WM consumption was not
dependent on the season, the main variations depended on whether
householders teleworked.

In REFIT, the WM is available in 19 out of the 20 households. In
particular, there are 2 WMs in household 4, in which the consumption
data was jointly analyzed.

• DW: In [47] it is indicated that DW usage decreases as the number
of family members increases. It is also verified that the presence of
teenagers and increase in extra-salary positively affects the DW usage.
In [51] similarly to the WM, it is stated that modern DWs should be run
on full loads to reduce do electricity, water, and detergent consump-
tion. Also, it is expected that conscious householders will use them
more sparsely through time. As for the WM, the DW consumption
is not dependent on seasonal variation but on whether householders
teleworked or not [50].

In REFIT, the DW is available in 15 out of the 20 households.

• KT: On a previous study using the REFIT dataset, [52] indicated the
presence of well-defined patterns of use for weekdays during standard
office hours. The pattern variation was mainly dependent on the type
of occupancy and general daily schedule, and the vacation period. The
KT usage appears to be regular at peak times (morning and evening
around dinner) and sporadic otherwise. In [53] the KT is indicated as
optionally used for preparing breakfast and relaxing/leisure activities.
The KT is available in 14 out of the 20 REFIT households.

• MW: According to [47] the intensity of usage increases as the number
of householders increases. It is also suggested that an increase in one
of the household members income reduces usage, which derives from
the family eating out more frequently. In [53] a study conducted in
UK households indicates that the MW is used mostly for preparing
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breakfast and optionally for relaxing/leisure and preparing dinner. In
REFIT, the MW is available in 16 out of the 20 households.

3.2. Time Window Splitting
To analyze the effects of seasonality in appliance consumption, the ex-

periments are performed using a year-long period (from 2014-06-21 to 2015-
06-20). The year-long data is further divided into meteorological seasons: 1)
summer (from 2014-06-21 to 2014-09-21); 2) fall (2014-09-22 to 2014-12-20);
3) winter (2014-12-21 to 2015-03-19); and 4) spring (2015-03-20 to 2015-06-
20).

The data for each season is further divided into 12 consecutive sliding
windows, each of which consisting of a 2-week period, with a 1 week overlap.
In fall and winter, the 12th sliding window contains less than 14 days due to
calendar peculiarities. In the present experiment, the data granularity is set
at 1 minute, and invalid data entries (e.g., NaNs) were discarded.

3.3. Parameter Selection
Throughout the description of the proposed methodology in Section 2,

there is a set of parameters (ρ) that have to be defined prior to the experi-
ment. The set can be denoted by:

ρ = {τ,∆, C0, T, δ1, δ2}
where τ is the threshold chosen for selecting the prominent peaks from the
given appliance’s ACF; ∆ is the aggregation range in difference sets; C0 is the
threshold above which the energy concentration coefficients are considered
to be significant and below which the sliding windows are removed; T is the
number of appliance power samples per day; and δ1, δ2 are constants that are
used for smoothing the boundaries between the different frequency patterns
in the defined pattern criteria.

Notice that by setting a reasonably high τ , the number of selected ACF
prominent peaks tends to decrease, thus the difference sets may be smaller
or the frequency of difference values within the difference sets are reduced,
and vice-versa. By increasing ∆, the size of difference sets is reduced and
since more difference values are aggregated, the probabilities assigned to dif-
ference values will change. The constants δ1, δ2 directly influence the number
of sliding windows whose most frequent differences (or close differences) are
assigned to a frequency pattern, and ultimately can change the chosen fre-
quency pattern. For the cases in which many of the most frequent differences
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are close to the boundaries, the choice of the frequency pattern is very sen-
sitive to δ1, δ2 or both.

For this case study in particular, the parameter values were selected for
the purpose of illustration: τ = 0.05, ∆ = 400 (i.e., activities separated
by no more than approximately 6 hours and 30 minutes are aggregated),
C0 = 0.1, T = 1440, δ1 = 240 and δ2 = 820. It is out of the scope of
this paper to determine how to obtain the most adequate parameter values
for the experiment, hence parameter selection is addressed in more detail in
subsection 5.2. Then, the pattern identification criteria are set to:

• H: most differences are d < 1200.

• M: most differences are 1200 < d < 3500.

• L: most differences are d > 3500.

The mixed frequency patterns that follow from the criteria obtained above
are the same as represented in subsection 2.3.

3.4. Evaluation Methodology
The results of this case study (presented in Section 4) are presented as

follows. First, for a given appliance, the frequency patterns are obtained for
each household throughout the seasons, which allows to check for seasonal
variation among the households. Then, for a given season, the frequency
patterns for each of the selected appliances are obtained for each household.
This is also of interest since it is possible to compare the consumption of the
different appliances in particular households.

The results are presented in the form of heatmaps and tables. The
heatmaps provide a direct overview of the existing frequency patterns among
households and across seasons. In this respect, heatmaps are more efficient
than other plots, by enabling a visual understanding and interpretation. In
the opposite direction, the tables are useful to inform on the totals of fre-
quency patterns and thus ideal to make quantitative comparisons across sea-
sons.

4. Results and Discussion

In subsection 4.1, for the selected appliances, the usage patterns were
compared through the seasons of the year. In subsection 4.2, the usage
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patterns of different appliances were compared for each season. In subsection
4.3, it was presented a use case of the proposed methodology on energy
efficiency. The households that do not contain at least one of the appliances
under study are colored with white on the heatmaps.

4.1. Individual appliance level

(a) (b)

(c) (d)

Figure 6: Usage patterns detected by the developed procedure for the washing machine
(a), dish washer (b), kettle (c) and microwave (d) throughout the seasons of the year.
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Washing machine
Pattern Su F W Sp Total
H 7 7 5 8 27
M 6 7 9 8 30
L 0 0 1 1 2
Mixed 5 3 3 2 13
No pattern 1 2 1 0 4

(a)

Dish washer
Pattern Su F W Sp Total
H 4 4 6 3 17
M 7 8 9 7 31
L 1 0 0 0 1
Mixed 1 1 0 3 5
No pattern 2 2 0 2 6

(b)
Kettle

Pattern Su F W Sp Total
H 5 6 3 6 20
M 3 2 2 3 10
L 1 0 3 0 4
Mixed 1 0 2 1 4
No pattern 4 6 4 4 18

(c)

Microwave
Pattern Su F W Sp Total
H 10 9 6 8 33
M 3 3 3 2 11
L 1 1 2 0 4
Mixed 2 1 3 4 10
No pattern 0 1 2 2 5

(d)

Table 1: Total frequency of usage patterns through the seasons for the (a) washing ma-
chine, (b) dish washer, (c) kettle and (d) microwave. "Mixed" represents all mixed patterns
possibilities. "No pattern" stands for the cases in which none of the defined frequency pat-
terns were detected.

In the appliance level evaluation, for each appliance, the household con-
sumption is assessed throughout the seasons. The results are summarized in
Figure 6 and Table 1.

As it can be observed, the WM is an appliance that evidences seasonal
variation since there is a large number of households with significant pattern
change throughout the seasons (Figure 6 (a)). In fact, the M usage holds,
in general, only for about 21% of the households. In general, the occurrence
of different usage patterns is balanced across the seasons - H and M usage
prevail, respectively, for about 42% (8/19) and 32% (6/19) of households.

From Table 1 (a), in winter the M usage prevails over other usage patterns.
In fact, there is an increasing tendency for M usage among the households
as fall and winter arrive. With the beginning of spring, H and M usage
patterns seem to balance out. Also, only for household 6, there is a number
of seasons in which no significant pattern was detected according to the
proposed methodology. Furthermore, according to Table 1 (a), there is a
total of 4 cases for which no pattern was assigned, which is not a large
number in comparison with the total number of cases.

In contrast, for the DW, seasonal variation is less evident throughout the
year. Still, some households exhibit pattern change, which is the case for
households 1, 5, and 13. Figure 6 (b) shows that the M usage prevails, in
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general, across the seasons for about 53% (8/15) of the households, while the
H usage holds for all seasons for 20% of the households. From Table 1 (b) it
is clear that the M usage prevails over other usage patterns for all seasons.
There are 2 households in which no pattern was detected for at least one
season. Nevertheless, the number of no pattern cases is again not relevant in
comparison with the total number of cases.

With respect to the KT, Figure 6 (c) indicates that the H usage prevails
across seasons for about 50% (7/14) of households. From Table 1 (c), by
looking at each season separately, the H usage prevails over other usage
patterns, except for winter. There is also relevant pattern change through
seasons. Note that for about 64% of the households there is at least one
season in which no pattern was detected. In this case, the number of no
pattern cases is also relatively large in comparison with the total number of
cases.

Concerning the MW, Figure 6 (d) indicates that there is relevant pattern
change for about 37.5% of households. The H is the usage pattern that
prevails across seasons - 62.5% (10/16) of the households. The M usage
only prevails for 12.5% of households, while the L usage prevails only for
6.25% of households, which is substantially small in comparison to H usage.
In fact, Table 1 (d) shows that H usage prevails over other usage patterns
throughout the seasons. Also, for about 18% of the households, there is at
least one season in which no pattern was detected, but similarly to the DW
and WM the total number of occurrences is not significant.

In general, it can be seen that the WM and the DW are not used with
the same frequency as the KT and the MW. This was somewhat expected
since the WM and DW, if not used efficiently, can lead to significant water
waste and electricity consumption [48, 51]. Nevertheless, it is possible that
consumption patterns for WM and DW vary according to specific socio-
economic factors that were mentioned in subsection 3.1.1. Hence, for a more
in-depth analysis of the results, it would be important to access qualitative
data regarding REFIT.

Although it was expected, in general, a larger frequency of the L usage
pattern for the WM, the results may change when the parameters defined
in subsection 3.3 are altered. There is a number of mixed pattern usages of
the type M/L and H/L in which by altering δ1 and δ2, for instance, could
increase the number of Ls. For the DW in particular, it was noticed a more
consistent use, in general, throughout the year in comparison with the other
studied appliances.
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4.2. Season level
Similarly to the appliance level, the consumption patterns are analyzed

at the season level. For each season, the appliance consumption is assessed,
which may provide insights on how the consumption differs or not among
different appliances. The results are summarized in Figure 7, and Table 2.

By analyzing Figure 7 it was noticed some important relationships among
the appliances throughout the seasons. The WM and the DW are similarly
used for a minimum of approximately 53% of households in fall and a max-
imum of 60% of households in spring (Table 2 (a)). For the KT and MW,
there is a similar usage for a minimum of approximately 23% of households in
winter and a maximum of 46% of households in spring (Table 2 (b)). Also,
the WM and microwave exhibit similar usage for a minimum of approxi-
mately 33% of households in fall and a maximum of 53% of households in
summer (Table 2 (c)).

Washing machine - Dish washer
Summer Fall Winter Spring
53% 40% 53% 60%

(a)

Kettle - Microwave
Summer Fall Winter Spring
38% 31% 23% 46%

(b)
Washing machine - Microwave

Summer Fall Winter Spring
53% 33% 47% 47%

(c)

Table 2: Pattern similarity detected across the seasons for (a) washing machine and dish
washer, (b) kettle and microwave and (c) washing machine and microwave.

Like with the case presented in Section 4.1, it was expected that the
WM and DW exhibited, in general, similarity in terms of usage. The same
applies to the KT and MW. For the WM and MW it was noticed significant
percentages in terms of similarity, which at first was not expected due to the
need to fit WM usage more efficiently in housework routine than that of the
MW.
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(a) (b)

(c) (d)

Figure 7: Usage patterns detected by the developed procedure for the chosen appliances
in summer (a), fall (b), winter (c) and spring (d).

4.3. Use case: Energy Efficiency Assessments
Herein is illustrated a simple use case of the proposed methodology re-

garding the energy efficiency of individual appliances. In this case, the chosen
appliance was the WM. It was intended to assess the efficiency of WMs across
households considering the experiment duration in the previous case study,
i.e., throughout the four seasons.
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To measure the efficiency of appliance usage, it was defined that the
pattern results from the case study would be considered. In particular, for
the WMs, the corresponding results are shown in Figure 6 (a). For each
household’s WM a global usage pattern was assigned in order to cover the
four seasons, which would represent the pattern that prevailed for two or
more seasons (in the former, provided the remaining seasons were assigned
different usage patterns). In the case of ties, such households were classified
as undefined. In Table 3, it is shown how households were grouped in terms
of the definition of WM global patterns from Figure 6 (a).

Pattern Households
High 9, 13, 16, 17, 18, 19, 20, 21
Medium 2, 3, 5, 7, 8, 10
High/Low 4
Undefined 1, 6, 11, 15

Table 3: Households aggregated by global pattern from pattern in figure 6 (a).

Since global usage patterns H or undefined indicate a high frequency of
WM usage or simply an irregular usage frequency throughout the experiment,
it was considered that WM usage in these circumstances was less efficient,
especially if the number of occupants is small. In contrast, since global
patterns M or L indicate a moderate or sporadic usage, such WM usage was
considered efficient.

The next step was to analyze the available household features from RE-
FIT and relate them to the global patterns in Table 3. This enabled to
check whether there was any tendency between the global pattern results
and household features. Among the available features, it was considered the
number of occupants (occupancy) and the number of household beds (house-
hold size) since these features provided a more representative input on energy
efficiency.

Occupancy Households
1 to 2 1, 3, 4, 6, 8, 9, 11, 15, 18, 20
3 to 4 2, 5, 7, 10, 13, 17, 19, 21

More than 4 16

(a)

Household size Households
2 to 3 2, 3, 7, 8, 9, 10, 11, 15, 17, 18

19, 20, 21
4 or more 1, 4, 5, 6, 13, 16

(b)

Table 4: Definition of categories for REFIT dataset features (a) Occupancy and (b) Hous-
esold size.

Overall, occupancy takes values between 1 and 6, and household size
between 2 and 5. Since some feature values are less frequent than others,

21



occupancy and household size were divided into categories, as shown in Ta-
ble 4. Notice that for a broader study it would be recommended that more
features regarding the dataset were available.

Then, global patterns were grouped by feature categories (Figure 8 and
Figure 9), which enabled to depict the most relevant relationships for assess-
ing the efficiency of WM usage. In terms of occupancy, Figure 8 indicates
that households 2, 5, 7, and 10 have 3 to 4 occupants and M pattern for the
WM, as opposed to households 3 and 8, whose number of occupants lies in 1
to 2. Also, for households 13, 17, 19, and 21 the pattern is H, and the occu-
pancy lies in 3 to 4, in contrast with households 9, 18, and 20 with occupancy
in 1 to 2. Notice that all households with an undefined pattern have 1 to
2 occupants. Thus, it seems that there is a more volatile consumption for
households with 1 to 2 occupants, with more incidence of H and undefined
patterns, i.e., undefined (40% of households), H (30%), M (20%), and H/L
(10%). Hence, for the chosen parameters, households with 3 to 4 occupants
seem more energy-efficient since there is 50% of households for both pat-
terns H and M, which indicates a more moderate usage. Since there is only
one household with more than 4 occupants, this category was not studied in
detail.

(a) (b)

Figure 8: Identification of households with a given global pattern result for the WM which
have occupancy corresponding to (a) 1 to 2 occupants, and (b) 3 to 4 occupants.

For household size, Figure 9 indicates that households 2, 3, 7, 8 and 10
have 2 to 3 beds and M pattern, which is almost all households with M
pattern, except for household 5. Also, it can be noticed that most households
with the H pattern, i.e., households 9, 17, 18, 19, 20 and 21, have 2 to 3 beds,
except for households 13 and 16 which have 4 or more beds. Hence, it seems
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that for households with 2 to 3 beds there is more energy efficiency, with
a larger incidence of the M pattern, i.e., H (about 46% of households), M
(about 38%), and undefined (about 15%), than households with 4 or more
beds size, i.e., H (about 33%), M (about 17%), and undefined (about 33%).

(a) (b)

Figure 9: Identification of households with a given global pattern result for the WM which
have size corresponding to (a) 2 to 3 beds, and (b) 4 or more beds.

5. Conclusion

In this work, a formal procedure based on the ACF was proposed to
complement the analysis of household consumption patterns from energy
consumption datasets. The procedure enables a straightforward and rigorous
distinction between different usage profiles across the seasons of the year -
seasonal variation. It also enables to easily check for similarity of usage
between different household appliances. The procedure was applied to the
REFIT dataset for illustration purposes, in particular, the washing machine,
dishwasher, kettle, and microwave consumption data were considered.

5.1. Research Implications and Potential Applications
The methodology presented in this work improves the existing state-of-

the-art on consumption pattern analysis. The current research on the topic
would benefit from an easier and more rigorous detection of consumption
patterns, that ultimately leads to the definition of user profiles, and a better
energy distribution among buildings.

In addition, the results obtained in the form of heatmaps and tables
are useful for assessing the similarity of usage between appliances, which
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varies across households and seasons of the year, and also for an appliance
in particular. In particular, the methodology would improve research on the
creation of sustainable energy communities by enabling easier identification
of buildings in which new strategies and practices should be implemented
at the housework level to reach sustainable consumption. For instance, in
the case of washing machines and dishwashers, developing better practices
would ensure a reduction in electricity and water waste. Thus, a potential
application would be the automatic assessment of efficient and inefficient
appliance usage, as illustrated in the use case in subsection 4.3 for the washing
machine.

This methodology can also be of interest for studies concerning dataset
comparability, e.g. [54, 55, 56], in which datasets with varying complexi-
ties and different characteristics affect disaggregation performance. In the
context of load disaggregation, it would enable checking how consumption
patterns impact the disaggregation performance of appliances from the ag-
gregate time series data.

5.2. Limitations
Even though this work proposes a flexible methodology to the type of

experiment and researcher choices, particularly in terms of parameter setting,
it comes with its caveats.

More precisely, there can be high volatility in the results when the pattern
criteria are altered. For instance, if the most frequent differences are close
to the boundaries between frequency patterns, any changes concerning the
parameters δ1 and δ2 (remaining parameters fixed) can greatly impact the
frequency pattern that results for a given case. There is a similar effect for the
parameters τ and C0, which affect, respectively, the number of selected ACF
prominent peaks for a sliding window and the number of sliding windows
that are significant for choosing the frequency pattern. Furthermore, if the
number of power samples per day, T , is large enough, not only there can be
changes in terms of the interpretation of the ACF prominent peaks, but also
the computation time for calculating the ACF increases.

Therefore, before running the experiment, it is recommended to carry
out a sensitivity analysis for the parameters. Depending on the research
topic, a sensitivity analysis may be conducted differently, but, in general, it
consists of studying how the output of a model varies with uncertainty in
the model input, check, e.g., [57]. This enables the researcher to analyze
how the pattern identification is influenced by different choices of parameter
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values and ultimately choose the more adequate values for the dataset being
considered. In practice, the selection of parameter values is optimized for
that case. It is also clear that the assessment of energy efficiency as depicted
in subsection 4.3 is limited by the choice of the methodology parameters,
for which a small variation may lead to a different conclusion in terms of an
appliance efficiency. A more detailed analysis of energy efficiency would also
benefit from access to more information on household characteristics.

Note that, by changing the dataset or the experiment conditions, the
choice of parameters may change. Naturally, sensitivity analysis results may
depend on the number of households in the dataset, which are expected to
be more accurate for larger datasets. In this work, the methodology was
illustrated considering a dataset with 20 independent households. It would
be interesting to consider datasets from different countries or regions. If it
was possible, the experiment could be conducted for a longer period, e.g.,
one more year of data. Doing this would enable checking how the pattern
results change across different years, enabling not only the analysis of seasonal
variation but also annual variation.

5.3. Future Work Directions
A future work direction is to demonstrate the applicability of the proposed

methodology to the comparability of datasets. For such accomplishment,
the next step would be to show how to conduct a sensitivity analysis to the
presented case study, which would be a landmark to new studies considering
the proposed methods. From that point onward, it is adequate to assess the
relationship between the appliance consumption analysis and the respective
disaggregation performance from the aggregate data.

Additionally, future work should seek to benchmark the proposed method
with alternative approaches. For example, time-frequency analysis meth-
ods such as the short-term Fourier transform and wavelets can be used to
characterize the appliance consumption by exploring the time and frequency
domains in simultaneous [58].

Lastly, the present methodology could be applied to other domains be-
yond electricity consumption. For instance, it could be extrapolated to water
consumption studies, as it would be enough that the dataset kept a time se-
ries structure and instant water flow records. This could be an important tool
for improving water monitoring and management in buildings, as pointed out
in [59]. Interestingly, it would also enable a joint analysis of electricity and
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water consumption in buildings [60, 61], in particular for appliances such as
the washing machine and the dishwasher.
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