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A residential labeled dataset for 
smart meter data analytics
Lucas Pereira   1 ✉, Donovan Costa2 & Miguel Ribeiro1

Smart meter data is a cornerstone for the realization of next-generation electrical power grids by 
enabling the creation of novel energy data-based services like providing recommendations on how 
to save energy or predictive maintenance of electric appliances. Most of these services are developed 
on top of advanced machine-learning algorithms, which rely heavily on datasets for training, testing, 
and validation purposes. A limitation of most existing datasets, however, is the scarcity of labels. The 
SustDataED2 dataset described in this paper contains 96 days of aggregated and individual appliance 
consumption from one household in Portugal. The current and voltage waveforms were sampled 
at 12.8 kHz, and the individual consumption of 18 appliances was sampled at 0.5 Hz. The dataset 
also contains the timestamps of the ON-OFF transitions of the monitored appliances for the entire 
deployment duration, providing the necessary ground truth for the evaluation of machine learning 
problems, particularly Non-Intrusive Load Monitoring. The data is accessible in easy-to-use audio and 
comma-separated formats.

Background & Summary
Smart-meter data analytics has gained traction in the past years, leveraged by the massive deployments of smart 
meters worldwide. For instance, in1 it is stated that in the United States, electric utilities aimed at installing 
around 90 million smart meters by 2020. Also, it was expected that almost 72% of European consumers would 
have a smart meter in the European Union, which would represent a roll-out of close to 200 million smart 
meters.

The type of problems to tackle and the employed data analytics methods are extensive when it comes to smart 
meter data, as highlighted by some literature reviews on the topic, e.g.,2–5. In the concrete case of the residential 
sector, smart-meter data applications include real-time and historical feedback6, forecasting7, appliance and 
activity recognition8,9, anomaly detection10, and demand-side flexibility estimation11. In this context, electricity 
consumption datasets are crucial to test the signal processing and machine learning algorithms at the core of 
such applications.

Several residential electricity consumption datasets can be found in the literature, each of which with its own 
characteristics as summarized in different survey papers12–14. Such characteristics include the number of sensors 
(e.g., a single sensor for the whole building, circuit-level, and appliance level), type of measurements available 
(e.g., current, voltage, active and reactive power, and energy tariffs), data granularity (e.g., from several kHz to 
one sample every hour or less), and dataset duration (e.g., from a couple of days to several years)15. While all 
these characteristics play an important role in classifying the different datasets, the co-existence of aggregated 
and individual appliance consumption measurements is commonly used to categorize electricity consumption 
datasets since this aspect has a crucial implication on the potential applications of each dataset13. For exam-
ple, algorithms for appliance identification and activity recognition can only be evaluated in datasets where 
individual appliance consumption data are also available. Fortunately, this is the case with the majority of the 
existing residential datasets, as over 20 of them include both types of measurements, e.g., the Reference Energy 
Disaggregation Dataset (REDD)16, Almanac of Minutely Power dataset (AMPds)17, REFIT18, and UK-DALE19.

Besides the monitored electrical quantities, for some application areas, the existence of labeled appliance 
transitions (also referred to as power events) is essential to train and validate the underlying algorithms. This is 
the case of real-time appliance recognition algorithms that rely on the accurate detection and classification of 
appliance transitions20,21, and anomaly detection algorithms that often rely on historical patterns of appliance 
transitions22,23. Still, to the best of our knowledge, to date, there are only four real-world datasets that con-
tain labeled appliance transitions, namely, Building-Level Fully-labeled dataset for Electricity Disaggregation 
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(BLUED)24, SustDataED25, Energy Monitoring through Building Electricity Disaggregation (EMBED)26, and 
Fully-labeled High-Frequency Electricity Disaggregation Dataset (FIRED)27.

The BLUED dataset consists of voltage and current measurements for a single-family residence in the United 
States. BLUED contains seven consecutive days of data, sampled at 12 kHz. Every state transition of each appli-
ance in the home was labelled and time-stamped. SustDataED consists of electric energy consumption and room 
occupancy measurements taken from a single-family apartment in Portugal during ten consecutive days. The 
voltage and current measurements were sampled at 12.8 kHz. The dataset also contains the individual consump-
tion for 17 individual loads, measured at 0.5 Hz complemented with individual labels for the state transitions of 
those loads. The EMBED dataset contains the aggregate power measurements and load data of different appli-
ances for three residential units in the United States. The data was collected for at least two weeks in each house-
hold. The voltage and current measurements were sampled at 12 kHz, whereas the individual load measurements 
were sampled at 1–2 Hz. The FIRED dataset contains 52 days of 8 kHz aggregated current and voltage measure-
ments of a 3-phase residential apartment in Germany. The dataset also contains the individual appliance meas-
urements of 21 appliances, sampled at 2 kHz, with labelled power consumption transitions. Finally, it should 
be stressed that there are a few other labeled datasets, however, these were obtained either in controlled envi-
ronments Plug-Load Appliance Identification Dataset (PLAID)28, Laboratory-measured IndustriaL Appliance 
Characteristics (LILAC)29 and LIT30), or through simulation (Synthetic Energy Dataset (SynD)31 and LIT).

Against this background, this paper introduces a new real-world labelled dataset, the SustDataED2. The 
SustDataED2 is the second iteration of the SustDataED dataset and was collected on a second household for a 
longer period. More precisely, SustDataED2 contains 96 days (from October 6th 2016 to January 9th 2017) of 
aggregated and individual appliance consumption from one house with three residents. The current and voltage 
waveforms were sampled at 12.8 kHz, and the individual consumption of 18 appliances was sampled at 0.5 Hz. 
The dataset also comprises power measurements derived from the current and voltage waveforms, namely, 
active power, reactive power, current, and voltage. These measurements are made available at 50 Hz and 1 Hz.

This paper provides a thorough description of how the dataset was collected and labelled. It includes detailed 
information on how the collected data was pre-processed from the original files and organized to form the 
SustDataED2 dataset. This paper also analyzes the quality of the data and provides instructions on how to reuse 
the dataset.

Methods
Data collection setup: aggregated consumption.  The setup for collecting aggregated consump-
tion consists of a multi-channel data acquisition board (LabJack U6 [see http://www.labjack.com/U6, accessed 
13/09/2021]), one processing unit (Toshiba NB300 [see https://www.pcworld.idg.com.au/review/toshiba/
nb300/338720/, accessed 13/09/2021]), and a combination of split-core Current Transformers (CTs)) and Voltage 
Transformers (VTs). The selected CTs were of the model SCT-013-050 (see http://www.datasheet-pdf.com/PDF/
SCT-013-050-Datasheet-YHDC-1328320, accessed 13/09/2021) with a 50 A to 1 V voltage output, to ensure 
direct compatibility with the DAQ. These were not only the cheapest CTs on the market but also the less intrusive 
due to the fact they have a split-core which makes the installation easier. As for the VT, at the time of develop-
ment, there were no feasible alternatives on the market. Therefore it was necessary to develop a custom solution. 
In this concrete case, the developed transformer steps down the voltage from 230 V to 0.5 V RMS, ensuring full 
compatibility with the data acquisition device. The LabJack U6 was selected because, at the time of development, 
it offered the best trade-off between functionality and price. In particular, the fact that it supported a sampling 
rate up to 50 Hz with 16-bits resolution was vital since it allowed the collection of current and voltage waveforms 
at high frequency. Furthermore, since LabJack support USB-3, it could be directly connected to any computer 
to handle all the computation tasks. In this case, the Toshiba NB300 notebook was selected since it was already 
available from a previous project.

Figure 1 illustrates the main components of the aggregated consumption data collection platform. The CT 
and VT are installed in the main breaker box, hence measuring the total household consumption. The DAQ 
performs the data acquisition at a pre-defined sampling rate (12.8 kHz in this case) and sends the samples to 
the gateway via USB 2.0. The sampled current and voltage waveforms are stored in the Energy Monitoring and 
Disaggregation Data Format (EMD-DF) file format32 in one-hour long files. This was done to mitigate the effects 
of synchronization issues that may occur due to the differences in the internal clocks of the data acquisition 
(LabJack U6) and processing unit (Toshiba NB300) devices (see https://goo.gl/GTMp9Y, accessed 20/01/2022). 
Ultimately, instructing the data acquisition software (running on the processing unit) to store the collected sam-
ples every hour on a new file ensures that any synchronization issues are not propagated through time.

DAQ
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Hour_n.wav

...

USB 2.0

Gateway

Every 60
Minutes

Current Transformer
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Fig. 1  Main components of the data collection setup for the aggregated consumption (icons by draw.io).
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Data collection setup: appliances consumption.  The appliance-level data collection was performed 
using the Plugwise system (see https://www.plugwise.com/, accessed 13/09/2021), which was also used in25,33,34.

Figure 2 illustrates the main components of the individual data collection platform for individual appliances. 
The Plugwise sensors are connected between the appliances to be monitored and the respective power outlets. 
The gateway (Toshiba NB300) requests the latest power measurement in each of the plugs through the ZigBee 
(see http://www.zigbee.org, accessed 13/09/2021) protocol, using the python-plugwise library (see https://pypi.
org/project/python-plugwise/, accessed 13/09/2021). The collected samples are stored in a local relational data-
base. It should be noted that the plugwise sensors report their consumption sequentially, meaning that the first 
plug is only revisited once all the remaining plugs have been visited. Each plug visit takes around 100 ms, mean-
ing that it takes one second to scan ten plugs (1 Hz) when all the plugs are online. In the case of SustDataED2, 
since there are 18 plugs, each appliance will be scanned roughly every two seconds (0.5 Hz). Ultimately, this also 
means that the timestamps collected for each will not necessarily be the same. For example, if the scan starts 
exactly at 12:00:00, the first ten plugs to be visited will have a timestamp of 12:00:00, whereas the remaining eight 
will have a timestamp of 12:00:01.

Data labelling.  In order to label the individual appliance transitions, we relied on the semi-automatic label-
ling platform described in35. More precisely, event detection algorithms are executed in the background to locate 
each appliance’s power events. The events are then presented to the end-user in a graphical user interface for 
correction, i.e., remove false positives and false negatives. In the case of SustDataED2, the first author was the 
person responsible for visually inspecting the system detected labels for validation and correcting any erroneous 
detections (i.e., false positives and false negatives). Finally, the only labelling criteria was that any power event 
with an absolute power change of at least 10% of the appliance consumption mode (excluding zeros) was consid-
ered for labelling. The amount of power change was calculated by subtracting the average power before and after 
each potential power event, t. E.g., if the sample just before the event of interest is 20 Watts, and the one just after 
the event is 50 Watts, the calculated power change is 30 Watts.

Deployments.  The monitoring platform was deployed in a single-family house (three adults) for three 
months (between October 6th 2017 and January 9th 2017).

The monitored house, built in the 1910s, comprises nine main divisions across two floors. Eighteen appli-
ances were monitored across six divisions (two bedrooms, office, kitchen, living room, dining room, and one 
WC). It was impossible to monitor the appliances in the remaining three divisions due to the limited coverage 
range of the ZigBee protocol. Table 1 lists the monitored appliances and the respective monitoring periods.

MySQL
Gateway

ZigBeePlugwise Plug 1

Plugwise Plug n

...
Every 1-2

Seconds

Fig. 2  Main components of the data collection setup for individual appliance consumption (icons by draw.io).

ID Appliance Start Date End Date

1 Coffee Machine 2016-10-06 2017-01-09

2 Fridge - Freezer 2016-10-06 2017-01-09

3 Freezer 2016-10-06 2017-01-09

4 Hand Mixer 2016-10-06 2016-12-13

5 Hair Dryer + Straightener 2016-10-06 2017-01-09

5 Kettle 2016-10-06 2017-01-09

7 MacBook 2007 2016-10-06 2017-01-09

8 MacBook Pro 2011 (1) 2016-10-06 2016-11-30

9 MacBook Pro 2011 (2) 2016-10-06 2016-11-25

10 Microwave 2016-10-06 2016-12-09

11 Stove + Oven 2016-10-06 2017-01-09

12 TV Philips 2016-10-23 2016-11-26

13 TV Sharp 2016-10-06 2016-10-30

14 TV Grundig 2016-10-06 2016-10-23

15 TV Samsung 2016-11-26 2017-01-09

16 TV-LG 2016-10-06 2017-01-09

17 Toaster 2016-10-06 2016-12-09

18 Vacuum Cleaner 2016-10-06 2017-01-09

Table 1.  List of monitored appliances and the respective monitoring periods.
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Data Records
The SustDataED2 dataset is made available in the form of Sony Wave64 (W64) and Comma Separated 
Values (CSV) files. The data is available on the Open Science Framework (OSF) data repository at https://doi.
org/10.17605/OSF.IO/JCN2Q36. Figure 3 shows an overview of the underlying organization of SustDataED2. 
The following subsections describe the contents of the different files.

Aggregated consumption measurements.  Aggregated consumption data is made available in two dif-
ferent ways: 1) raw (voltage and current), and 2) processed (active power, reactive power, voltage RMS, and 
current RMS).

Raw data.  The raw data files are available under the folder “mains/V_I”. The voltage and current waveforms 
are stored in the W64, with a sampling rate of 12.8 kHz. In order to reduce the file size, the W64 files were com-
pressed using the WavePack (see https://www.wavpack.com/, accessed 13/09/2021) audio compression library 
(extension *.wp). For details on the decompression procedure, please refer to the Usage Notes section for more 
details.

The name of each file consists of a Unix timestamp (in milliseconds), which corresponds to the timestamp of 
the first sample in each file. This timestamp is used to retrieve the timestamps of the remaining samples (please 
refer to Usage Notes for details). The waveform content of each file (after decompression) is described in Table 2.

Pre-processed data.  The pre-processed data files are available under the folder “mains/P_Q_V_I”. These are 
made available in two formats: 1) Sony Wave 64 (sample rate of 50 Hz), and 2) CSV (1 Hz).

The waveform content of the W64 files (after decompression) is described in Table 3. The columns of the CSV 
files are described in Table 4. In both cases, the file name indicates the timestamp of the first sample.

Individual appliance consumption measurements.  The files with data for individual appliance con-
sumption are available in the “appliances” folder. For each appliance there is a CSV file, named using the 
<id>_<name>.csv convention, where <id> refers to the unique identifier of the appliance, and <name> is 
the appliance name. The underlying fields of the individual appliance consumption files are described in Table 5.

Fig. 3  Underlying folder and file organization of SustDataED2 Dataset.

Column Description Units

channel 1 Voltage Volt

channel 2 Current Amp

Table 2.  Description of the audio channels in the raw aggregated consumption files (<initial_
timestamp>.w64).

Column Description Units

channel 1 Active Power Watt

channel 2 Reactive Power VAR

channel 3 Voltage RMS Volt

channel 4 Current RMS Amp

Table 3.  Description of the audio channels in the 50Hz pre-processed aggregated consumption files 
(<initial_timestamp>.w64). VAR: Volt-Ampere Reactive.
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Labels.  The files with the appliance transition labels are available in the “appliances/labels” folder. For 
each appliance there is a CSV file named using the <id>_<name>_labels.csv convention. The underlying fields 
are described in Table 6.

Technical Validation
Aggregated consumption.  In the course of the deployment, the aggregated consumption data collection 
system had to be rebooted four times due to issues with the USB communication. At the end of the deployment, 
there was a total of 2263 W64 files, divided across six consecutive periods. In order to reduce the number of files, 
the consecutive hour-long files were merged into W64 files. Before merging, each hour-long file was pre-pro-
cessed to ensure that it had the expected number of samples, i.e., 12800 × 60 × 60 samples. The cleaning and the 
merging were done using the dsCleaner Python library37.

As an illustration of the data contained in the raw current and voltage files, Fig. 4 depicts four seconds of the 
data in the file “mains/V_I/1477227096132.w64”. It is possible to observe an increase in the current 
signal corresponding to an appliance transition (the Freezer in this case.)

The aggregated voltage and current files were used to calculate the power metrics that comprise the 
pre-processed files. The calculations were originally performed at line frequency to obtain the 50 Hz files. Finally, 
the 1 Hz files were obtained by downsampling the 50 Hz files using the dsCleaner library. Technical details about 
the calculation of the power metrics are out of the scope of this data descriptor. But the interested reader can 
refer to38 (chapter 3).

Figure 5 depicts one hour of aggregated consumption as it is stored in the raw processed files at 50 Hz 
(“1477227096132.w64”). As it can be observed, each file contains four channels: Voltage RMS, Current 
RMS, Active Power, and Reactive Power. It is also possible to see several appliance transitions, the first of which 
corresponds to the Freezer activation also observed in Fig. 4. Note also that in this case, the measurements are 
scaled to their original values using the calibration constants provided in the “calibration.txt” file.

Individual appliance consumption.  Throughout the deployment, between 2016-10-06 and 2017-01-09, 
there were 53,149.470 timestamped readings taken from the 18 appliances combined. Figure 6 depicts the meas-
urements obtained from each plug for the entire duration of the deployment, resampled to 0.5 Hz, which was the 
actual rate of acquisition as mentioned in the methods section. As it can be observed, there are very few gaps in 
the data. In fact, on average, 92.3% of the expected samples were acquired (min: 79.6, max: 94.2, std: 3.4).

To further illustrate the collected ground-truth data, Fig. 7 depicts one day of aggregated consumption vs. 
consumption of the individual appliances resampled to 1/60 Hz. As it can be observed, there is a very good 
match between the aggregated and the ground truth. Still, even though the consumption for 18 individual appli-
ances was collected, the amount of total energy explained is only about 38%. This happens due to the loads in the 
unmonitored divisions of the house. Such non-monitored appliances include a washing machine, water heater, 
iron, portable oven, and a second freezer. Table 7 summarizes the ratio between individual appliances and aggre-
gated consumption for the entire duration of the dataset.

Column Description Units

timestamp Timestamp (YYYY-MM-DD HH:MM:SS) when the record was collected (UTC) datetime

P Active Power Watt

Q Reactive Power VAR

V Voltage RMS Volt

I Current RMS Amp

Table 4.  Column descriptions in the 1Hz pre-processed aggregated consumption files (<initial_
timestamp>.csv). VAR: Volt-Ampere Reactive.

Column Description Units

timestamp Timestamp (YYYY-MM-DD HH:MM:SS) when the record was collected (UTC) datetime

power Appliance power consumption Watt

Table 5.  Column descriptions for the measurements files (<id>_<name>.csv).

Column Description Units

timestamp Timestamp (YYYY-MM-DD HH:MM:SS) of the appliance transition datetime

source Source of this label (S: System, H: Human) text

Table 6.  Column descriptions for the labels files (<id>_<name>_labels.csv).

https://doi.org/10.1038/s41597-022-01252-2
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Appliance labels.  The labeling process results in a total of 12252 appliance labels from all appliances com-
bined. Around 95% of these labels were obtained directly from the event detection algorithms, whereas the 
remaining 5% were added manually. The majority of the labels (70%) are from three appliances only, namely 
the Freezer (47%), microwave (14%), and fridge-freezer (7%). The number of labels per appliance is depicted in 
Table 8.

Finally, to illustrate the ground-truth labels, Fig. 8 shows the consumption of each appliance supplemented 
with the respective labels. Note that for each label, it was necessary to find the respective power value on the 
consumption data since this is not available by default in the dataset.

Usage Notes
Decompressing files.  The aggregated consumption data files are compressed using the WavPack Audio 
Compression format. Thus, before using the files, it is necessary to proceed with the decompression. The more 
straightforward way is using the wvunpack application directly from the command line. Alternatively, it is pos-
sible to use the WavePack decoders made available in different programming languages, including Java and C#.

Reading files.  The data are made available in W64 (after decompression), and CSV format, which are com-
patible with most software packages, including MATLAB, Python (e.g., dsCleaner and audiotools [see http://

Fig. 4  Four seconds of voltage and current sampled at 12.8 kHz.

Fig. 5  One hour of voltage, current, active and reactive power sampled at 50 Hz.
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Fig. 6  Graphical representation of the measurements obtained for each individual appliance for the entire 
duration of the deployment. The data is resampled to 0.5 Hz.

Fig. 7  Graphical representation of 24 hours of aggregated and individual appliances consumption. The data is 
resampled to 1/60 Hz.
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audiotools.sourceforge.net/, accessed 13/09/2021]), and Java (EMD-DF6439, and Java Sound API [see https://
www.oracle.com/java/technologies/java-sound-api.html, accessed 13/09/2021]).

Handling timestamps.  Aggregated consumption.  The aggregated consumption files stored in the W64 file 
format do not contain a timestamp. It is, therefore, necessary to calculate the timestamps, taking as input the 
timestamp of the first sample. This can be done individually for each sample using Eq. (1), which returns a Unix 
timestamp in milliseconds:

unix timestamp
current sample

f
initial unix timestamp_ 1000

_ 1
_ _

(1)
= ×

−
+

where current_sample is the position of the sample of interest, initial_unix_timestamp is the unix timestamp of 
the first sample, and f is the sampling rate of the waveform data. Alternatively, it is also possible to generate all the 
timestamps at once. For example, in Python this is possible using the pandas.date_range() command.

Appliances consumption and labels.  Regarding the appliances consumption and labels, it is important to 
remark that the timestamps are represented in Universal Time Coordinated (UTC). Therefore, when converting 
the Unix timestamps to date and time formats, it is necessary to set the timezone to UTC to ensure that all the 
timestamps are always represented in the same timezone.

Furthermore, it is important to stress again the fact that the timestamps are not the same across all the appli-
ances. Therefore, it is essential to align the timestamps before performing any operations on individual appli-
ances. In Python, this can be easily achieved by resampling the data to 0.5 Hz and filling missing values using 
forward and backwards fill in sequence.

Finally, concerning the individual appliance labels, it is possible to convert the timestamps to an approximate 
sample in the aggregated data. This is done using Eq. (2):

File Period Aggregated (kWh) Appliances (kWh) Ratio (%)

1475708700932.w64 2016-10-06 00:05 - 2016-10-22 13:45 161.7 60.0 37.2

1477227096132.w64 2016-10-23 23:51 - 2016-10-27 16:44 38.7 14.6 37.6

1477592018787.w64 2016-10-23 19:13 - 2016-11-11 15:27 129.0 41.0 31.8

1478884263362.w64 2016-11-11 17:11 - 2016-12-20 08:02 385.6 103.2 26.7

1482282276343.w64 2016-12-21 01:04 - 2016-12-31 16:11 132.2 38.1 28.8

1483205843836.w64 2016-12-31 17:37 - 2017-01-09 23:59 99.6 23.6 23.7

Table 7.  Ratio between the consumption from the monitored appliances and the aggregated consumption for 
the entire duration of the dataset.

Appliance Labels (S) Labels (H)

Coffee Machine 312 2

Fridge-Freezer 1098 0

Freezer 5723 4

Hand Mixer 65 7

Hair Drier + Straightener 278 108

Kettle 463 4

MacBook 2007 824 110

MacBook Pro 2011 (1) 65 236

MacBook Pro 2011 (2) 20 50

Microwave 1701 55

Stove-Oven 398 2

TV Philips 91 1

TV Sharp 176 2

TV Grundig 18 0

TV Samsung 81 1

TV LG 231 26

Toaster 7 1

Vacuum Cleaner 79 13

11630 622

Table 8.  Listing of the number of labels per appliance.
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position
actual unix timestamp initial unix timestamp_ _ _ _

1000 (2)f
1=

−

×

where actual_unix_timestamp is the Unix timestamp of the labelled transition to the mapped, initial_unix_
timestamp is the timestamp in milliseconds of the first sample in the aggregated consumption, and f is the 
sampling rate of the aggregated consumption. Note, however, that since the individual appliance consumption 
is only available at 0.5 Hz, the obtained position can be delayed by up to two seconds.

Code availability
The code used to collect and store the aggregated consumption data is available at https://gitlab.com/alspereira/
EMD-SF. This project used the EMD-DF library to create the audio files, which is available https://gitlab.com/
alspereira/EMD-DF. The code runs using Java 8 or higher on a Windows machine. The code used to collect the 
individual appliance consumption is available at https://gitlab.com/mikemx55/Plugwise-2-M-ITI. The code runs 
using Python 3 on a Ubuntu machine. Finally, the Python 3 code to reproduce the examples presented in this 
paper is available on the dataset repository at https://osf.io/jcn2q/36.
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Fig. 8  Individual appliances consumption supplemented with the respective transition labels.
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