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Abstract

This article presents an overview of the literature on privacy protection in

smart meters with a particular focus on homomorphic encryption (HE).

Firstly, we introduce the concept of smart meters, the context in which they

are inserted the main concerns and oppositions inherent to its use. Later, an

overview of privacy protection is presented, emphasizing the need to safeguard

the privacy of smart-meter users by identifying, describing, and comparing the

main approaches that seek to address this problem. Then, two privacy protec-

tion approaches based on HE are presented in more detail and additionally we

present two possible application scenarios. Finally, the article concludes with a

brief overview of the unsolved challenges in HE and the most promising future

research directions.
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1 | INTRODUCTION

A smart grid is an electricity grid/network that allows a bidirectional flow of electricity and data whereby
smart-metering is often seen as a first step (Agarkar & Agrawal, 2019). A key aspect of the smart grid is that, unlike the
traditional grid where consumers are passive actors, in the smart grid they become part of the process (Völker
et al., 2021; Wang et al., 2019). This change will have a significant impact on the end-user, affecting their consumption
habits and energy management routines. For example, if the end-user is ill-prepared for the changes that will come, it
will have a bad impact and an increase in energy costs.

In high-level terms, a smart-grid consists of smart appliances, sensors, control systems, wireless communication
devices, gateways, and smart meters (SMs). Information about electricity consumption from the SM is collected and
accumulated at the gateways nodes. The data from a number of gateways are then put together in the so-called aggre-
gator nodes, which are then made available to a control center. A high-level illustration of the smart grid is provided in
Figure 1.

SMs are a cornerstone to the smart-grid realization since without them it is not possible to have accurate and timely
(often near real-time) information on the energy flows (Zheng et al., 2013). In fact, in the traditional grid, energy
metering is only possible for billing purposes since only the total consumption (in kWh) is measured (Snap Energy
Latino, 2019).
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While the concept of a smart grid is about a decade old, the first smart-metering devices date back to 1972. Back
then, Ted Paraskevakos created a system for digital monitoring. This system was intended for security, fire, and medical
alarm systems, but was also able of reading utility meters. After receiving a US patent for this, in 1974, he created the
company that was responsible for the first commercially available fully automated remote meter reading and load
management system.

Ironically, despite their central role in the smart grid, SMs are the source of major concerns such as the proposition
of value, public health, cyber-security, and user privacy (Hess & Coley, 2014).

The proposition of value refers to the extent SMs actually deliver the expected benefits. For example, having access
to real-time consumption information is expected to lead to reductions in the energy bills (Zheng et al., 2013). However,
the findings regarding the effectiveness of such solutions to date are not unanimous (Mogles et al., 2017), which may
cause user resistance to smart-metering deployments.

Public health concerns are related to the belief that radio frequency emissions from wireless SMs are harmful to
humans (Jeff Evans, 2012; Hess & Coley, 2014). Despite scientifically unfounded, (Exponent Inc., 2014; Richmond
et al., 2011), this shows that the smart-grid infrastructure is not yet well understood (Jeff Evans, 2012).

As for cyber-security, SMs when not properly commissioned and installed can become vulnerable to cyber-attacks
that can lead to power outages and network overloads (Anderson & Fuloria, 2010; Hahn & Govindarasu, 2011; Wang &
Lu, 2013). Against this background, the National Institute of Standards and Technology (NIST) has developed a series
of guidelines for smart-grid security (NIST, 2014). An extensive review of standards and technical countermeasures for
smart grid cyber-attacks can be found in Hussain et al. (2018).

Regarding privacy, the main concerns are inherent to the possibility of inferring behavioral patterns from
energy consumption data. Using electric load signature analysis tools such as non-intrusive load monitoring
(NILM; Pereira & Nunes, 2018) that disaggregate the total consumption into individual devices, it is possible to
have an attacker that can infer personal information about users, for example, if there are occupants in the house
at a given time; whether the inhabitants maintain regular work schedules or daily routines; if they often go on
vacation; have lunch or dinner regularly outside the home (Jin et al., 2017; Rubio et al., 2017). To make matters
worse, the fact that occupancy alone is highly correlated with simple statistical metrics like average consumption
and energy range, it is easier for an attacker to work even without very sophisticated algorithms (Barbosa, Brito, &
Almeida, 2016).

The main ambition of this article is to present an overview of existing techniques to enhance the privacy of SM
data, with a particular focus on homomorphic cryptography. In more detail, the contributions consist of a review
of homomorphic cryptography, especially focused on ElGamal cryptosystem; the presentation of a possible pro-
posal for efficient homomorphic smart measurement; the presentation of two application scenarios and the discus-
sion of future directions with respect to cryptographic systems speaking briefly of the impact of quantum
computing.

This article is organized as follows: Section 2 provides a concise overview of the literature in privacy protection
techniques for SM data; Section 3 presents a detailed description of privacy protection techniques based on homomor-
phic cryptography; Section 4 presents two possible application scenarios of homomorphic cryptography in SMs; and
Section 5 presents a discussion on the main challenges and future opportunities in HC and the conclusion.

FIGURE 1 A simplified overview of a smart grid network
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2 | SMART METERS: PRIVACY PROTECTION OVERVIEW

Given the privacy exposure problem, it is necessary to build efficient infrastructures that adopt strategies that ensure
the nondisclosure of private information. Overall, existing methods to mitigate privacy issues with SM data can be
divided into two broad categories: changing the energy consumption profile (CEP) or changing the smart-meter data
(CMD). Ultimately, all the techniques under these two categories attempt to minimize the loss of privacy by decreasing
the chance of inferring sensitive information from the energy consumption data, for example, the consumption of
individual appliances using NILM (Zhang et al., 2020).

2.1 | Change energy profile

As the name suggests, approaches under this category aim at changing the load demand profiles such that sensitive
information cannot be inferred from SM data measurements (e.g., active power). There are three main approaches
under the CEP category: (1) battery energy storage systems (BESS), for example, (Farokhi & Sandberg, 2018; Sun
et al., 2015; Zhang et al., 2017); (2) renewable energy systems (RES), for example, (Giaconi, Gündüz, & Poor, 2018;
Gündüz & G�omez-Vilardeb�o, 2013; Reinhardt et al., 2015; Tan et al., 2013); and (3) flexible loads (FL), for example,
(Baker & Garifi, 2018; Chen et al., 2015; Chin et al., 2021; Egarter et al., 2014).

Strategies based on battery energy storage systems tackle the issue of privacy protection by charging and discharging
the storage device such that the SM data does not reveal any specific pattern about the residents. More precisely, when-
ever the house consumption exceeds a value that represents the level of stable and constant power consumption, the
storage device is drained to provide the additional power to the house rather than pulling it from the grid. Similarly,
when the house consumption is below the target value the battery is charged from the grid. Ideally, this process makes
demand flat and equal to a target value, thereby hiding any patterns that can reveal user presence and/or absence
(Chen et al., 2015). This strategy is also known as battery-based load hiding (BLH). The main drawback is privacy pre-
vention schemes based on this approach is that they are always limited by battery capacity (kWh) and inverter size
(kW). Furthermore, the battery charging and discharging may conflict with the users' economic interests, and lead to
quicker degradation of the storage device.

Approaches based on renewable energy sources change the energy profile by controlling the output of local generation
technologies such as solar photo-voltaic systems (solar PV). This can be done in several ways, but ultimately the objective is
to either simulate or hide the presence of loads (e.g., [Reinhardt et al., 2015]). The former can be achieved by lowering the
renewable generation such that the demand from the grid increases hence simulating an appliance activation. In contrast,
the latter can be achieved by increasing the renewable generation output when specific appliances are in use. By increasing
the generation, the demand from the grid will decrease, thus hiding the load consumption. Like with the approaches based
on BESS, privacy protection strategies that rely on RES are also limited by the size of the renewable production facilities. For
example, in the case of solar PV, this approach is limited by production capacity (kWp), and inverter size (kW). Likewise,
the automatic control of the production units may conflict with the economic interests of the owners, for example, increasing
the payback time if constantly producing below the rated capacity.

Contrasting the two previous alternatives, approaches based on flexible loads do not require the acquisition of additional
hardware. Instead, they rely on flexible appliances, that is, appliances that can be used with different power levels or whose
usage can be shifted in time. Privacy with flexible loads can be achieved in two main forms. First, by consuming energy
demand, for example, turning the water heater ON, to simulate or hide the presence of appliances. Second, by shifting load
usage in time (e.g., wet appliances) to mask individual appliance signatures (Chin et al., 2020; Kyri Baker and Kaitlyn
Garifi, 2018). Of particular interest in this approach are electric vehicles (EVs) in the presence of smart-charging technology,
which can be used at different power levels and for different periods of time. One limitation of approaches based on flexible
loads is that at some stage energy can be consumed without need. For example, turning the water heater ON even if hot water
is not required implies that extra electricity is used, and potentially a thermal loss if the hot water is not used in due time.

2.2 | Change meter data

In contrast to CEP, approaches under the change meter data category aim at changing the SM readings before they are
used by third-party entities, for example, the utility. There are three main approaches under the CMD category: (1) noise
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addition (NA), for example, (Barbosa et al., 2014; Fioretto et al., 2019; He et al., 2013); (2) data-downsampling (DS), for
example, (Cardenas et al., 2012; Reinhardt et al., 2013; Eibl & Engel, 2015); and (3) data aggregation (DA) (Ilic
et al., 2013).

NA ensures the preservation of privacy by injecting tolerable noise into the SMs' original or aggregated readings, to
obfuscate the real power consumption. Typical noise techniques, such as Gaussian, Laplace, or Gama noise, are
employed as any of these enable that noise to cancel out once enough readings are put together (Barbosa et al., 2014).
Thanks to the simplicity and low complexity of this approach, it can be easily deployed on low computing devices like
most SMs. However, this solution suffers from a major drawback, which is the lack of formal methods for calculating
the amount of noise that should be added to ensure the desired levels of privacy and also the utility needs (Barbosa,
Brito, & Almeida, 2016). For example, the currently available techniques do not support dynamic power tariffs, which
are quite common in smart-grid scenarios (Zhang et al., 2020).

Approaches via data down-sampling aim at protecting privacy by reducing the temporal frequency at which mea-
surements are available to third-party entities. Typical approaches consist of decimation (consider only every Mth sam-
ple), filtering (e.g., average and median), and quantization (map the original measurement to a smaller set of discrete
finite values; Reinhardt et al., 2013). Despite its simplicity, there is also an evident trade-off between privacy and utility
needs when using this approach. For example, at very low data granularity dynamic tariffs and participation in demand
response programs are no longer possible (Zhang et al., 2020).

Approaches that rely on DA reduce the privacy loss by constructing aggregators to collect the data from a few SMs
together, so the utility is unable to detect the electricity events in a single meter. Techniques under this category are
either with or without a trusted third party (TTP). In the former case, a data aggregator (DA) is responsible for gather-
ing data from SMs and sending them to the utility. For example, in (Bohli et al., 2010) the data in each meter is
encrypted (e.g., asymmetric encryption) before being sent to the DA, which in turn decrypts and averages the data from
the different meters before sending it (encrypted) to the utility. As for the latter, encryption techniques like homomor-
phic encryption (HE) are used to encrypt the meter data before being sent to the utility, which is then able to manipu-
late the data without decrypting it (Li et al., 2010; Lu et al., 2012). Privacy protection techniques based on HE are
discussed in detail in the remaining sections of this article.

2.3 | Comparison between techniques

To summarize, we perform a comparison of the above-mentioned approaches. The comparison is based on the follow-
ing indicators: the financial cost, environmental impact, end-user impact, computational complexity, and independence
between SMs. The comparison results are summarized in Table 1, where the number of checkmarks (✓) varies from
zero (worst) to three (best).

The following observations are made:

• Low cost and low environmental impact: As mentioned, BESS helps to mitigate many privacy issues, but it is impossi-
ble to ignore its environmental effects and costs of using batteries (Dehghani-Sanij et al., 2019). Besides that, adding
additional battery cycles for privacy protection may result in a lower calendar life of the devices. RES, on the other
hand, is also not necessarily low cost. However, the prices have been consistently dropping, especially in the case of

TABLE 1 Comparison between the reviewed privacy protection techniques

CEP CMD

BESS RES FL NA DS DA

Low cost ✓ ✓✓ ✓✓✓ ✓✓✓ ✓✓

Low environmental impact ✓ ✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Low end-user impact ✓ ✓✓ ✓✓✓ ✓✓✓

Low computational complexity ✓ ✓ ✓ ✓✓ ✓✓✓

Independence between meters ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Note: The number of checkmarks (✓) varies from zero (worst) to three (best).
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solar PV. These also have a lower environmental impact, especially when compared to Li-ion batteries (Dai
et al., 2015). The remaining approaches do not have this limitation, despite DA (in particular HE) may require more
expensive hardware.

• Low user impact: Approaches under the CEP have a significant impact on the end-users. This is particularly true in
the case of BESS and RES given the trade-offs between device operation for privacy protection and economic benefits.
Likewise, FL can also have a significant user impact if the operation of such devices has undesirable effects on the
daily life of the end-users. NA, on the other hand, does not affect routines, however, it currently suffers from the
limitation that it does not support the application of dynamic tariffs, which may end up impacting end-users choices.
The same issue can happen with DS, depending on the data down-sampling factor. For example, reducing the
sampling to one sample per hour would imply that dynamic energy prices can only change every hour.

• Computational complexity: Low computational complexity is mainly desired because most installed SMs have low-
cost micro-controllers with very limited computing resources. In this respect, DA approaches are the most complex,
especially those based on HE. In contrast, NA and DS are the least complex solutions. As for the approaches under
the CEP category they all have similar levels of complexity since the working principle is very similar. The main
difference is the enabling technology, which adds its own constraints in terms of load-leveling capacity.

• Independence between meters: The only approach studied here that does not have independence between SMs is DA
(considering HE) because to exchange randomly generated keys, and secret shares, HE protocols require communica-
tion between the meters. Additionally, if a meter fails any message exchange, aggregation can become impossible if it
requires pending calculations using all distributed keys or secret shares. This, in turn, can create scalability problems
when DA is applied in areas with a large number of meters.

2.4 | Relation to other review articles

Having received the attention of a large body of work, there are already some interesting published literature reviews
on the field. A listing of such review articles is presented in Table 2, where “Focus” indicates the categories reviewed
(CEP, CMD, or Both), and “HE” indicates if HE is addressed (Y—Yes, N—No).

In their article, (Barbosa, Freitas, et al., 2016), the authors explore the technical details of five different privacy-
preserving approaches, namely, NA, BESS, and three HE alternatives. In (Finster & Baumgart, 2015), privacy protection
of SM data is reviewed from two perspectives, billing, and operations. This article also reviews approaches under CEP
and CMD categories, including BESS and HE, but unlike (Barbosa, Freitas, et al., 2016) it does not go deep with regard
to HE based approaches. In (Asghar et al., 2017), the authors cover several techniques under the CEP and CMD catego-
ries, considering three uses of SM data: billing, operations, and value-added services. Ultimately, this review does not
provide in-depth technical details about any of the techniques but rather explores whether each technique can be
applied and still enable the different use cases. Similarly, (Farokhi, 2020) and (Win & Tonyalı, 2021) provide high-level
overviews of SM data privacy using both CEP and CMD based techniques.

While these five review articles cover techniques under the two categories, the works presented in (Giaconi,
Gunduz, & Poor, 2018) and (Agarkar & Agrawal, 2019) focus only on one of the categories. More precisely, (Giaconi,

TABLE 2 List of review articles in privacy protection of smart-meter data

Title References Focus HE

Privacy-aware smart metering: A survey (Finster & Baumgart, 2015) Both Y

Privacy-preserving techniques in smart metering: An overview (Barbosa, Freitas, et al., 2016) Both Y

Smart meter data privacy: A survey (Asghar et al., 2017) Both Y

Privacy-aware smart metering: Progress and challenges (Giaconi, Gunduz, & Poor, 2018) CEP N

A review and vision on authentication and privacy preservation
schemes in smart grid network

(Agarkar & Agrawal, 2019) CMD Y

Review of results on smart-meter privacy by data manipulation,
demand shaping, and load scheduling

(Farokhi, 2020) Both N

Security and privacy challenges, solutions, and open issues in
smart metering: A review

(Win & Tonyalı, 2021) Both Y
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Gunduz, & Poor, 2018) focuses on techniques under the CEP category; namely, BESS, RES, and DS. Conversely,
(Agarkar & Agrawal, 2019) reviews cryprographic approaches for privacy preservation, which fall in the CMD category;
it addresses HE, elliptic curve cryptography (ECC), and lattice cryptography (LC) based schemes, showing how they
have been employed by other researchers. This review article provides an overview and comparison of techniques under
CEP and CMD categories, before focusing on the details of HE. Unlike the existing reviews, this article attempts to pro-
vide a comprehensive overview of the technical details of HE approaches, in particular of ElGamal cryptosystems. Two
possible application scenarios using that cryptosystem and based on different types of aggregation are also presented.

3 | HOMOMORPHIC ENCRYPTION

Smart metering systems need a secure way to regularly transmit consumption information through the Internet such
that the privacy of consumers is preserved. Privacy protection approaches based on cryptography have already proven
their usefulness in this field. These are particularly interesting approaches because, on the one hand, they prevent
attackers from obtaining confidential data without the private key and, on the other hand, they avoid falsifying signa-
tures to request arbitrary readings (Rouf et al., 2012). One such approach is HE. This is especially useful when solutions
are aggregated and meters are organized into groups. At the level of smart metering, HE turns out to be very important
because it allows the supplier to obtain only the aggregate consumption values from the meters in each group.

There are essentially two proposals related to cryptography and smart grid networks that can be found in the litera-
ture: HE and ECC (Agarkar & Agrawal, 2019). The first proposal includes several possible cryptosystems, the best
known being Paillier cryptosystem and ElGamal cryptosystem.

HE is a standard approach to secure multi-party computation (SMC) that allows direct arithmetic operations on
encrypted values. SMC is a cryptographic problem in which multiple parties jointly compute a value based on individu-
ally held private data, without sharing the data. In this problem, security is often derived from one-way functions like
integer factorization or discrete logarithm problem. The best-known example of SMC is the millionaire problem: Alice
and Bob are interested in knowing which of them is richer without revealing their true wealth. More formally, for sev-
eral individuals I1,…,In, each has initial inputs x1,…,xn. The output yi is calculated using a function f, such that:
f x1,…,xnð Þ¼ y1…,ynð Þ. That is, each individual Ii only obtains the output yi. During the computation process, the actual
value of each Ii's input xi is kept privately without being revealed to anyone but yi's values are public. This process is
achieved by applying HE over the integers x1,…,xn.

In (Domingo-Ferrer, 2002), HE schemes are defined as “encryption transformations mapping a set of operations on
cleartext to another set of operations on ciphertext.” In other words, this means that it is possible to perform operations
on the ciphertext without decrypting it first. Homomorphic cryptographic systems are a security protocol option, thanks
to their additive and multiplicative homomorphic properties. A fully homomorphic encryption (FHE) scheme allows the
multiplication and addition of ciphertext. However, such schemes are relatively new and complex. It was only in 2009
that Craig Gentry developed the first fully homomorphic algorithm (Gentry, 2009). Therefore, it is preferable to use
partially HE schemes, which allows only one of these operations (Zirm & Niedermeier, 2012).

In (Knirsch et al., 2020), the authors present a direct comparison between the ElGamal and Paillier cryptosystems
for smart grid aggregation protocols, considering both runtime for encryption and decryption. Ultimately, the ElGamal
outperformed the Pailier cryptosystem, with a faster encryption-decryption execution time, as well as other features.
Therefore, in this article we focus on the study of ElGamal's cryptosystem.

Before moving on, remember from Section 2.3 that HE has some disadvantages. The two main disadvantages for
smart grid are: (1) the complexity of the mathematical operations which make homomorphic schemes computationally
expensive; and (2) the fact that the meters are not independent, since cooperation between them is required to avoid
the need for a third-party entity to handle the generation and consequent distribution/sharing of the private key
(Barbosa, Brito, & Almeida, 2016).

Such disadvantages suggest the need for another ElGamal scheme using elliptic curves, hence renewing the pres-
ence of a reliable entity. Using cryptography based on elliptic curves the resulting system requires only one message
sent from each SM without the need for communication between the meters. ECC is based on the properties of alge-
braic curves over fields and the security of ECC is based on the Elliptic Curve Discrete Logarithm Problem (ECDLP).

In this article, we present the technical details for two homomorphic cryptography schemes. The first scheme is
based on the discrete logarithm problem (DLP) and requires communication between meters. The second scheme relies
on elliptical curves to remove the need for communication between meters. These two approaches are described in the
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following sub-sections. For each system, we describe the cryptographic procedures and present the homomorphic
property and an application example.

3.1 | Modified ElGamal cryptosystem

This first HE system presented here is based on the DLP which was proposed in (Barbosa, Freitas, et al., 2016). The
DLP consists of the following: given a prime p, a generator g of ℤ�

p, and a nonzero element y�ℤp, find the unique inte-
ger x, 0≤ x≤ p �2, such that y≡ g x(mod p).

3.1.1 | Cryptographic system description

Set up and key generation
1. Choose two large prime numbers p and q such that qjp � 1;
2. Select a generator g of the order q multiplicative subgroup G of ℤ�

p;
3. The private key x is randomly generated such that x �ℤ�

q and the public key is y = g x.

Encryption
1. The message m � G is encrypted with the public key y, obtaining a random number r �ℤ�

q and calculating:

c¼ gr and d¼m:yr:

2. The m cryptogram under the y public key is:

Ey mð Þ¼ c,dð Þ:

Decryption
1. Ey(m) is decrypted calculating: m = d.c�x.

3.1.2 | Homomorphic property

This is a multiplicative homomorphic cryptographic system, since given messages m1 and m2, it is possible to obtain
m1 � m2 as follows:

Ey m1ð Þ �Ey m2ð Þ¼ c1 � c2,d1 �d2ð Þ¼ gr1 �gr2 ,m1 � yr1 �m2 � yr2ð Þ¼ gr1þr2 ,m1 �m2 � yr1þr2ð Þ¼ c1 � c2,d1 �d2ð Þ¼Ey m1 �m2ð Þ:

3.1.3 | Application in SMs

The ElGamal cryptosystem can be used in such a way that it is additively homomorphic. Suppose we want to calculate
the total consumption in a region. For that, (Busom et al., 2016) proposed an ElGamal cryptosystem similar to the
previous one but additive, such that:

Ey gm1ð Þ �Ey gm2ð Þ¼Ey gm1 �gm2ð Þ¼Ey gm1þm2ð Þ:

First, each SM has a large prime number q and its generator g, a private key xi and a public key yi ¼ gxi .
To encrypt measurements, a global public key y¼QN

i¼1yi is necessary. So let mi be the measurement of a SM. The
total consumption will consist of the following procedure:

1. Each meter generates a random value zi �ℤ�
q and computes the ciphertext by doing:
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Ci ¼Ey gmiþzið Þ¼ ci,dið Þ:
2. Ci is sent to the aggregator.
3. The aggregator combines all messages by doing:

C¼
YN
i¼1

ci,
YN
i¼1

di

 !
¼ c,dð Þ

and send c for each SM.

4. Each meter calculates Ti ¼ cxi �gzi and send the result to the aggregator.

5. At the end, the aggregator calculates D¼ d � QN
i¼1Ti

� ��1
and loggD¼M¼PN

i¼1mi, where M is the total
consumption.

In order to illustrate the cryptosystem that we have just presented, follow the scheme below. Let ESS denote electric-
ity supply substation which here represents the aggregating entity that receives periodic measurements from the SMs
(Figure 2).

This example works because the ESS calculates:

C¼
YN
i¼1

ci,
YN
i¼1

di

 !
¼

YN
i¼1

gri ,
YN
i¼1

gmiþzi � yri
 !

¼ gr ,gMþz � yr� �¼ c,dð Þ

and each SM computes:

Ti ¼ cxi �gzi ¼ gr � xi � gzi ¼ gxi � r �gzi ¼ yri �gzi :

So, the ESS calculates:

D¼ d �
YN
i¼1

Ti

 !�1

¼ gMþz � yrQN
i¼1

yri �gzið Þ
¼ gMþz � yrQN

i¼1
yrið Þ �gz

¼ gMþz � yr
gz � yr ¼ gM

In practice, when a SM is installed in a house, it establishes a connection with the ESS and before transmitting elec-
tricity measurements, the ESS needs to indicate to all SMs the start of a key establishment operation. This can be done
as follows:

FIGURE 2 Schema of the ElGamal cryptosystem

8 of 16 ABREU AND PEREIRA



1. ESS sends a message to each SM indicating that a key establishment will be carried out.
2. Each SM sends gxi and Certi to ESS.
3. ESS verifies the validity of Certi. If it is correct, yi and Certi are sent to all the other SMs that will perform the same

check.
4. Each SM computes the group public key as y¼QN

i¼1g
xi :

This validation process for the construction of the public key allows us to obtain the following scheme (Figure 3):

3.2 | ElGamal cryptosystem using elliptic curves

An elliptic curve is represented by an equation of the form:

y2 ¼ x3þaxþb,

with Δ = �16(4a 3 + 27b 2)≠ 0. ECC is based on the ECDLP, that is, given two points A and B on the curve such that
one is a scalar multiple of the other, A = k � B, it is computationally difficult to calculate k.

An ElGamal cryptosystem with additive homomorphism can be also defined using ECC, represented in (Deepak &
Chandrasekaran, 2020), as follows:

3.2.1 | Cryptographic system description

Set up and key generation
1. Choose a base point P of order N on an elliptic curve E over a finite field;
2. Choose f: x 7! Px, which converts plaintexts x into points Px on E. The function f is defined as f(x) = x � P, where �

represents the scalar multiplication of the point P with x;
3. Select a random private key k�ℤN .
4. The public key is the pair of points (P, Y = k � P).

Encryption
1. Choose a random number a�ℤN .

FIGURE 3 Schema of the ElGamal cryptosystem applied to a neighborhood of smart-meters

ABREU AND PEREIRA 9 of 16



2. Calculate Px = f(x), where x is the plaintext;
3. The ciphertext is the pair of points (a � P, a � Y + Px).

Decryption
1. From a received ciphertext (B1, B2), calculate B1

0
= k � B1 using the private key k;

2. Compute Px = B2 � B1
0
;

3. The original plaintext x is f�1(Px).

3.2.2 | Homomorphic property

Let us consider two ciphertexts c = (c1, c2), d = (d1, d2), where c and d are the encryptions of messages x and y, respec-
tively under the same key k. For a random a and b, let c = (a � P, a � Y+ x � P), d = (b � P, b � Y+ y � P). The ciphertext
corresponding to the encryption of the message (x+ y) under key k is:

cþd¼ aþbð Þ �P, aþbð Þ �Y þ xþ yð Þ �Pð Þ

3.2.3 | Application in SMs

ECC is based on the properties of algebraic curves over fields. Let us exemplify here, without going into too much
detail, how this cryptosystem could be applied to SMs.

First, each SM has a base point P of order N on an elliptic curve E over a finite field, a private key k�ℤN and a pub-
lic key is the pair of points (P, Y = k � P). Let mi be the measurement of a SM. The total consumption will be denoted by
M and consist of the following procedure:

1. Each meter generates a random value a�ℤN and computes the ciphertext by doing:

Bi,Biþ1ð Þ¼ a �P,a �Y þPmið Þ,

where Pmi ¼ f mið Þ and f is a function defined as f(mi) = mi � P.

2. (Bi, Bi+1) is sent to the aggregator.
3. The aggregator combines all messages by doing:

C¼ C1,C2ð Þ¼
XN
j¼1

Bj,Bjþ1
� �

and send C1 for each SM.

4. Each meter calculates C0
1 ¼ k �C1 and send the result to the aggregator.

5. Finally the aggregator calculates PM ¼C2�C0
1 and computes M = f�1(PM).

In order to illustrate the idea of the cryptosystem that we have just presented, follow the scheme below (Figure 4).
Similar to the previous scheme and so that the ESS indicates to all SMs the start of a key establishment operation,

we have the following more complete scheme:

4 | POSSIBLE APPLICATION SCENARIOS USING ElGamal
CRYPTOSYSTEM

In this section, we present two possible scenarios on how to use the ElGamal cryptosystem, introduced in the last sec-
tion, in the context of SM privacy preservation. The two scenarios presented are based on the ones presented in
(Zirm & Niedermeier, 2012) to demonstrate the application of the Paillier cryptosystem. More precisely, SMs are
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grouped into clusters and the objective is to send the aggregated load profiles of each cluster to the utility, without
revealing the individual profile of each SM. For the sake of simplicity, it is assumed that the communication channels
are already protected (Figure 5).

4.1 | Scenario 1: direct aggregation

In this scenario, the ElGamal cryptosystem with additive homomorphic property is used to aggregate user data in a sep-
arate aggregator, as illustrated in Figure 6.

In this scenario, each participating entity owns a set of keys (private and public). All the SMs send their data to the
respective cluster aggregator, encrypted with the Power Company public key. There, individual data is not deciphered
but aggregated using the homomorphic properties of the ElGamal cryptosystem. The Aggregator is therefore in posses-
sion of the cluster's overall encrypted consumption without knowing the individual SM measurements. The encrypted

FIGURE 4 Schema of the ElGamal cryptosystem

FIGURE 5 Schema of the ElGamal cryptosystem applied to a neighborhood of smart-meters
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data are then sent to the Power Company which is able to decrypt it using its private key. Upon decryption of the
data, the Power Company is in possession of the aggregated load profile, without knowing its individual
components.

4.2 | Scenario 2: spatial and temporal aggregation

In this second scenario, all SMs in a cluster have the same public key and the private key is known to all entities. More-
over, a separate Aggregator is not needed, because each SM can act as an aggregator itself. The procedure is illustrated
in Figure 7.

In this approach, each SM whit-in a cluster is responsible for encrypting its data (p). Each SM is also in possession
of a secret hash H(p), and a random number r �ℕ. Note that even though the private keys are known within a particu-
lar cluster, individual consumption data cannot be decrypted because the H(p) and r are only known by each SM. In

FIGURE 6 Scenario 1: direct aggregation

FIGURE 7 Scenario 2: spatial and temporal aggregation
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fact, it is only when all the values are aggregated, using the homomorphic property, that they can be decrypted by the
Power Company.

4.3 | Summary

In summary, when comparing the two scenarios, the second is more flexible than the first one because it allows adapta-
tion to various smart-grid scenarios and privacy requirements. For example, the second scenario can be easily adapted
to transfer the consumption data of individual appliances to the Power Company, whereas in the first scenario, only
the aggregated data can be transmitted to the Power Company. Furthermore, since it is not necessary to keep private
keys, this does no longer present a potential security breach.

5 | CONCLUSION

Ultimately, HE seems to be the only option where there is no trade-off between privacy and the benefits of the smart
grid. For example, CLP approaches have a significant effect on how the load is managed to assure privacy, which may
not be the best option for smart-grid operators. As for CMD, all these operations considerably reduce the quality of the
data available to the grid operator. In contrast, in HE, the actual measurements are available although in an indirect
format, which ensures privacy and at the same time adequate smart-grid operations.

However, one of the major problems of HE is the high computational cost of performing operations on top of encrypted
data that are several orders of magnitude slower than operations on unencrypted data.1 Against this background, recent
times have seems some efforts toward improving the computational performance of HE by introducing hardware accelera-
tion using GPU, FPGA, and possibly ASICs, for example, (Morshed et al., 2020; Roy et al., 2017; Yang et al., 2020). Further-
more, some efforts have also been developed toward producing custom hardware for HE. For example, in March 2021, Intel
announced a partnership with Defense Advanced Research Projects Agency (DARPA) to perform in its Data Protection in
Virtual Environments (DPRIVE) program, which aims to develop an accelerator for FHE2.

Currently, homomorphic cryptography has reached an inflection point and much of its future development will
consist of standardization. An important part of standardization is broad agreement on security levels for various
parameter sets. There is currently a document approved by the Homomorphicencryption.org community in 2018 with
recommendations of security parameters to be used for HE at various security levels (Albrecht et al., 2019; Chase
et al., 2017). Future versions of the standard should also describe a standard API (Brenner et al., 2017) and a program-
ming model for HE (Archer et al., 2017).

Ironically, despite the fact HE solutions are still very hard to implement in practice, one of the main challenges in
HE research lies whit-in the fact that HE needs to be adapted to the post-quantum era. In fact, it has already been
shown that a quantum computer with a sufficiently large number of qubits and depth of circuits can solve some of the
hard mathematical problems that form the basis of state-of-the-art homomorphic cryptography schemes (Agarkar &
Agrawal, 2019) and it is certain that the future and application of homomorphic cryptography will have to include and
rely on quantum computing (Alloghani et al., 2019). It is not yet known when there will be a stable quantum computer
capable of overthrowing current classical primitives, but the rapid development in this area means that it is important
to start preparing for what will be the future of cryptography. One of the approaches that have been considered is LC.3

Still, as mentioned by the authors (Agarkar & Agrawal, 2019), Lattice-based cryptography has not seen much develop-
ment in the context of the smart grid.

To sum up, it is clear that HE can contribute significantly to advancing the smart grid without compromising end-
user privacy. Nevertheless, besides the need for additional research toward making HE computationally efficient and
safeguard from future quantum computers, it is also crucial to develop an applied and multi-disciplinary research
agenda aiming at understanding and demonstrating how HE can be applied to different smart-grid use cases.
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Sunar, B. (2017). A standard API for RLWE-based homomorphic encryption. Technical Report. HomomorphicEncryption.org. Redmond,
WA.

Busom, N., Petrlic, R., Sebé, F., Sorge, C., & Valls, M. (2016). Efficient smart metering based on homomorphic encryption. Computer
Communications, 82, 95–101 https://linkinghub.elsevier.com/retrieve/pii/S0140366415003151.00026

Cardenas, A., Amin, S., & Schwartz, G. A. (2012). Privacy-aware sampling for residential demand response programs. Proceedings of the 1st
International ACM Conference on High Confidence Networked Systems (HiCoNS). ACM, Beijing, China. http://www.truststc.org/pubs/
903.html.

14 of 16 ABREU AND PEREIRA

https://orcid.org/0000-0002-9110-8775
https://orcid.org/0000-0002-9110-8775
https://doi.org/10.1002/widm.1129
https://doi.org/10.1002/widm.1392
https://doi.org/10.1002/widm.1399
https://pureai.com/articles/2020/07/13/homomorphic-encryption.aspx?m=1
https://www.intel.com/content/www/us/en/newsroom/news/intel-collaborate-microsoft-darpa-program.html
https://medium.com/cryptoblog/what-is-lattice-based-cryptography-why-should-you-care-dbf9957ab717
https://doi.org/10.1002/spy2.62
https://ia.cr/2019/939
http://nilmworkshop.org/2018/proceedings/Paper_ID02.pdf
http://www.sciencedirect.com/science/article/pii/S0020025516305862
https://doi.org/10.1145/2554850.2554982
https://doi.org/10.1145/2554850.2554982
https://linkinghub.elsevier.com/retrieve/pii/S0140366415003151.00026
http://www.truststc.org/pubs/903.html
http://www.truststc.org/pubs/903.html


Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter, K., Lokam, S., Moody, D., Morrison, T., Sahai, A., &
Vaikuntanathan, V. (2017) Security of homomorphic encryption. Technical report. HomomorphicEncryption.org. Redmond, WA.

Chen, D., Kalra, S., Irwin, D., Shenoy, P., & Albrecht, J. (2015). Preventing occupancy detection from smart meters. IEEE Transactions on
Smart Grid, 6, 2426–2434.

Chin, J.-X., Baker, K. and Hug, G. (2020) Consumer privacy protection using flexible thermal loads. arXiv:2002.05408 [cs, eess, math]. http://
arxiv.org/abs/2002.05408.

Chin, J.-X., Baker, K., & Hug, G. (2021). Consumer privacy protection using flexible thermal loads: Theoretical limits and practical consider-
ations. Applied Energy, 281, 116075.

Dai, K., Bergot, A., Liang, C., Xiang, W.-N., & Huang, Z. (2015). Environmental issues associated with wind energy—A review. Renewable
Energy, 75, 911–921 http://www.sciencedirect.com/science/article/pii/S0960148114007149

Deepak, K. & Chandrasekaran, K. (2020). Investigating elliptic curve cryptography for securing smart grid environments. 2020 Third ISEA
Conference on Security and Privacy (ISEA-ISAP), pp. 1–7.

Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., & Fraser, R. (2019). Study of energy storage systems and environmental chal-
lenges of batteries. Renewable and Sustainable Energy Reviews, 104, 192–208 http://www.sciencedirect.com/science/article/pii/
S1364032119300334

Domingo-Ferrer, J. (2002). A provably secure additive and multiplicative privacy homomorphism. Proceedings of the 5th International
Conference on Information Security, ISC'02, pp. 471–483. Springer-Verlag, Berlin, Heidelberg.

Egarter, D., Prokop, C., & Elmenreich, W. (2014). Load hiding of household's power demand. 2014 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pp. 854–859.

Eibl, G., & Engel, D. (2015). Influence of data granularity on smart meter privacy. IEEE Transactions on Smart Grid, 6, 930–939.
Evans, J. (2012). The opt-out challenge. Electric Light & Power. https://senate.texas.gov/cmtes/82/c510/1009-WaltBaum06.pdf.
Exponent Inc. (2014) Scientific and Public Health Agency perspectives on radio frequency fields related to smart meters. Technical Report.

1300283.000-2940, Vermont Department of Health, Montpelier, VT.
Farokhi, F. (2020). Review of results on smart-meter privacy by data manipulation, demand shaping, and load scheduling. IET Smart Grid, 3,

605–613.
Farokhi, F., & Sandberg, H. (2018). Fisher information as a measure of privacy: Preserving privacy of households with smart meters using

batteries. IEEE Transactions on Smart Grid, 9, 4726–4734.
Finster, S., & Baumgart, I. (2015). Privacy-aware smart metering: A survey. IEEE Communications Surveys Tutorials, 17, 1088–1101.
Fioretto, F., Mak, T. W. K., & Van Hentenryck, P. (2019). Differential privacy for power grid obfuscation. IEEE Transactions on Smart Grid,

11, 1356–1366 https://ieeexplore.ieee.org/document/8809257
Gentry, C. (2009) A fully homomorphic encryption scheme. (PhD thesis). Stanford University. crypto.stanford.edu/craig.
Giaconi, G., Gündüz, D., & Poor, H. V. (2018). Smart meter privacy with renewable energy and an energy storage device. IEEE Transactions

on Information Forensics and Security, 13, 129–142.
Giaconi, G., Gunduz, D., & Poor, H. V. (2018). Privacy-aware smart metering: Progress and challenges. IEEE Signal Processing Magazine, 35,

59–78.
Gündüz, D. & G�omez-Vilardeb�o, J. (2013). Smart meter privacy in the presence of an alternative energy source. 2013 IEEE International

Conference on Communications (ICC), pp. 2027–2031.
Hahn, A. & Govindarasu, M. (2011). Cyber attack exposure evaluation framework for the smart grid. IEEE Transactions on Smart Grid,

2. IEEE Transactions on Smart Grid.
He, X., Zhang, X., & Kuo, C.-C. J. (2013). A distortion-based approach to privacy-preserving metering in smart grids. IEEE Access, 1, 67–78.
Hess, D. J., & Coley, J. S. (2014). Wireless smart meters and public acceptance: The environment, limited choices, and precautionary politics.

Public Understanding of Science, 23, 688–702. https://doi.org/10.1177/0963662512464936
Hussain, S., Meraj, M., Abughalwa, M., & Shikfa, A. (2018). Smart grid cybersecurity: Standards and technical countermeasures. 2018

International Conference on Computer and Applications (ICCA), pp. 136–140.
Ilic, D., Karnouskos, S., & Wilhelm, M. (2013). A comparative analysis of smart metering data aggregation performance. 2013 11th IEEE

International Conference on Industrial Informatics (INDIN), 434–439. IEEE, Bochum, Germany. http://ieeexplore.ieee.org/document/
6622924/.

Jin, M., Jia, R., & Spanos, C. J. (2017). Virtual occupancy sensing: Using smart meters to indicate your presence. IEEE Transactions on Mobile
Computing, 16, 3264–3277.

Knirsch, F., Unterweger, A., Unterrainer, M., & Engel, D. (2020). Comparison of the Paillier and ElGamal cryptosystems for smart grid aggre-
gation protocols. Proceedings of the 6th International Conference on Information Systems Security and Privacy, pp. 232–239.
SCITEPRESS—Science and Technology Publications, Valletta, Malta. https://doi.org/10.5220/0008770902320239.

Li, F., Luo, B., & Liu, P. (2010). Secure information aggregation for smart grids using homomorphic encryption. 2010 First IEEE International
Conference on Smart Grid Communications, pp. 327–332.

Lu, R., Liang, X., Li, X., Lin, X., & Shen, X. S. (2012). EPPA: An efficient and privacy-preserving aggregation scheme for secure smart grid
communications. IEEE Transactions on Parallel and Distributed Systems, 23, 1621–1631. https://doi.org/10.1109/TPDS.2012.86

Mogles, N., Walker, I., Ramallo-Gonz�alez, A. P., Lee, J., Natarajan, S., Padget, J., Gabe-Thomas, E., Lovett, T., Ren, G., Hyniewska, S.,
O'Neill, E., Hourizi, R., & Coley, D. (2017). How smart do smart meters need to be? Building and Environment, 125, 439–450 http://
www.sciencedirect.com/science/article/pii/S0360132317304225

ABREU AND PEREIRA 15 of 16

http://arxiv.org/abs/2002.05408
http://arxiv.org/abs/2002.05408
http://www.sciencedirect.com/science/article/pii/S0960148114007149
http://www.sciencedirect.com/science/article/pii/S1364032119300334
http://www.sciencedirect.com/science/article/pii/S1364032119300334
https://senate.texas.gov/cmtes/82/c510/1009-WaltBaum06.pdf
https://ieeexplore.ieee.org/document/8809257
http://crypto.stanford.edu/craig
https://doi.org/10.1177/0963662512464936
http://ieeexplore.ieee.org/document/6622924/
http://ieeexplore.ieee.org/document/6622924/
https://doi.org/10.5220/0008770902320239
https://doi.org/10.1109/TPDS.2012.86
http://www.sciencedirect.com/science/article/pii/S0360132317304225
http://www.sciencedirect.com/science/article/pii/S0360132317304225


Morshed, T., Aziz, M. M. A., & Mohammed, N. (2020). CPU and GPU accelerated fully homomorphic encryption. arXiv:2005.01945 [cs].
NIST (2014) Guidelines for smart grid cybersecurity. Tech. Rep. NIST IR 7628r1, National Institute of Standards and Technology, Gaithers-

burg, MD, USA. URL: https://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf.
Pereira, L., & Nunes, N. (2018). Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools—A review. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8, e1265. https://doi.org/10.1002/widm.1265
Reinhardt, A., Egarter, D., Konstantinou, G., & Christin, D. (2015). Worried about privacy? Let your PV converter cover your electricity con-

sumption fingerprints. 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 25–30.
Reinhardt, A., Englert, F., & Christin, D. (2013). Enhancing user privacy by preprocessing distributed smart meter data. 2013 Sustainable

Internet and ICT for Sustainability (SustainIT), pp. 1–7.
Richmond, R., Macari, E., Mantey, P., Wright, P., McCarthy, R., Long, J. C. S., Winickoff, D., & Papay, L. (2011) Health impacts of radio fre-

quency from smart meters. Technical Report. CCST, Sacramento, CA. https://ccst.us/reports/health-impacts-of-radio-frequency-from-
smart-meters/.

Rouf, I., Mustafa, H., Xu, M., Xu, W., Miller, R., & Gruteser, M. (2012). Neighborhood watch: Security and privacy analysis of automatic
meter Reading systems. Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS'12, pp. 462–473.
Raleigh, NC, ACM. https://doi.org/10.1145/2382196.2382246.

Roy, S. S., Vercauteren, F., Vliegen, J., & Verbauwhede, I. (2017). Hardware assisted fully homomorphic function evaluation and encrypted
search. IEEE Transactions on Computers, 66, 1562–1572.

Rubio, J. E., Alcaraz, C., & Lopez, J. (2017). Recommender system for privacy-preserving solutions in smart metering. Pervasive and Mobile
Computing, 41, 205–218 http://www.sciencedirect.com/science/article/pii/S1574119217301645

Snap Energy Latino. (2019). History of smart meters. https://snapenergylatino.com/history-of-smart-meters/.
Sun, Y., Lampe, L., & Wong, V. W. S. (2015). Combining electric vehicle and rechargeable battery for household load hiding. 2015 IEEE Inter-

national Conference on Smart Grid Communications (SmartGridComm), pp. 611–616.
Tan, O., Gunduz, D., & Poor, H. V. (2013). Increasing smart meter privacy through energy harvesting and storage devices. IEEE Journal on

Selected Areas in Communications, 31, 1331–1341.
Völker, B., Reinhardt, A., Faustine, A., & Pereira, L. (2021). Watt's up at home? Smart meter data analytics from a consumer-centric perspec-

tive. Energies, 14, 719.
Wang, W., & Lu, Z. (2013). Cyber security in the smart grid: Survey and challenges. Computer Networks, 57, 1344–1371 http://www.

sciencedirect.com/science/article/pii/S1389128613000042
Wang, Y., Chen, Q., Hong, T., & Kang, C. (2019). Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE

Transactions on Smart Grid, 10, 3125–3148.
Win, L. L. & Tonyalı, S. (2021) Security and privacy challenges, solutions, and open issues in smart metering: A review. In 2021 6th Interna-

tional Conference on Computer Science and Engineering (UBMK), 800–805.
Yang, Z., Hu, S. & Chen, K. (2020) FPGA-based hardware accelerator of homomorphic encryption for efficient federated learning. arXiv:

2007.10560 [cs].
Zhang, X.-Y., Kuenzel, S., C�ordoba-Pach�on, J.-R., & Watkins, C. (2020). Privacy-functionality trade-off: A privacy-preserving multi-channel

smart metering system. Energies, 13, 3221 https://www.mdpi.com/1996-1073/13/12/3221
Zhang, Z., Qin, Z., Zhu, L., Weng, J., & Ren, K. (2017). Cost-friendly differential privacy for smart meters: Exploiting the dual roles of the

noise. IEEE Transactions on Smart Grid, 8, 619–626.
Zheng, J., Gao, D. W., & Lin, L. (2013). Smart meters in smart grid: An overview. In 2013 IEEE Green Technologies Conference (GreenTech),

pp. 57–64.
Zirm, M. & Niedermeier, M. (2012) The future of homomorphic cryptography in smart grid applications. Proceedings of the 3rd IEEE German

Student Conference. IEEE, Passau, Germany. https://pdfs.semanticscholar.org/b911/2a4d3aa84de19550c2acf6a107b79bb46838.pdf.

How to cite this article: Abreu, Z., & Pereira, L. (2022). Privacy protection in smart meters using homomorphic
encryption: An overview. WIREs Data Mining and Knowledge Discovery, e1469. https://doi.org/10.1002/
widm.1469

16 of 16 ABREU AND PEREIRA

https://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf
https://doi.org/10.1002/widm.1265
https://ccst.us/reports/health-impacts-of-radio-frequency-from-smart-meters/
https://ccst.us/reports/health-impacts-of-radio-frequency-from-smart-meters/
https://doi.org/10.1145/2382196.2382246
http://www.sciencedirect.com/science/article/pii/S1574119217301645
https://snapenergylatino.com/history-of-smart-meters/
http://www.sciencedirect.com/science/article/pii/S1389128613000042
http://www.sciencedirect.com/science/article/pii/S1389128613000042
https://www.mdpi.com/1996-1073/13/12/3221
https://pdfs.semanticscholar.org/b911/2a4d3aa84de19550c2acf6a107b79bb46838.pdf
https://doi.org/10.1002/widm.1469
https://doi.org/10.1002/widm.1469

	Privacy protection in smart meters using homomorphic encryption: An overview
	1  INTRODUCTION
	2  SMART METERS: PRIVACY PROTECTION OVERVIEW
	2.1  Change energy profile
	2.2  Change meter data
	2.3  Comparison between techniques
	2.4  Relation to other review articles

	3  HOMOMORPHIC ENCRYPTION
	3.1  Modified ElGamal cryptosystem
	3.1.1  Cryptographic system description
	Set up and key generation
	Encryption
	Decryption

	3.1.2  Homomorphic property
	3.1.3  Application in SMs

	3.2  ElGamal cryptosystem using elliptic curves
	3.2.1  Cryptographic system description
	Set up and key generation
	Encryption
	Decryption

	3.2.2  Homomorphic property
	3.2.3  Application in SMs


	4  POSSIBLE APPLICATION SCENARIOS USING ElGamal CRYPTOSYSTEM
	4.1  Scenario 1: direct aggregation
	4.2  Scenario 2: spatial and temporal aggregation
	4.3  Summary

	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	RELATED WIREs ARTICLES
	ENDNOTES
	REFERENCES


