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Abstract: Recent research on non-intrusive load monitoring, or load disaggregation, suggests that
the performance of algorithms can be affected by factors beyond energy data. In particular, by
incorporating non-electric data in load disaggregation analysis, such as building and consumer
characteristics, the estimation accuracy of consumption data may be improved. However, this
association has rarely been explored in the literature. This work proposes a data-centric methodology
for measuring the effect of non-electric characteristics on load disaggregation performance. A real-
world dataset is considered for evaluating the proposed methodology, using various appliances and
sample rates. The methodology results indicate that the non-electric characteristics may have varying
effects on the performances of different building appliances. Therefore, the proposed methodology
can be relevant for complementing load disaggregation analysis.

Keywords: non-electric data; building and consumer characteristics; data-centric analysis; disaggre-
gation performance; non-intrusive load monitoring

1. Introduction

The continuous reduction of greenhouse gas emissions is necessary for a more sustain-
able global energy distribution. In this regard, the building sector in particular contributes
to a significant share of energy emissions [1], and hence the best practices for energy ef-
ficiency must be implemented in this area. Many countries have invested considerably
over the years to promote the development of smarter electric grids [2]. Smart grids
have been developed to produce efficient and effective energy management and control,
save energy, and offer a more reliable solution in comparison with conventional power
grids [3]. Through the installation of smart metering systems, consumers have access to
novel data-based services that enable them to monitor the overall building consumption
and user-centric information that goes beyond the traditional billing [4,5].

Smart meters only measure the total building consumption. However, recent research
has shown that consumers are more inclined to reduce their consumption if information
at the appliance level is provided [6,7]. In this regard, non-intrusive load monitoring
(NILM) [8], or load disaggregation, was proposed to estimate the aggregate and appliance
(load) electricity consumption from individual meter measurements. The methods in NILM
include data acquisition, feature extraction, event detection, load identification, and energy
disaggregation, which have been addressed adequately by signal processing and machine
learning techniques over time [6].

In terms of load identification and energy estimation, the sample rate of smart meters
influences the detection of appliance signatures. The sample rates in NILM datasets typi-
cally range from 1 Hz (low frequency) to several kHz (high frequency) [9]. Although the
quality of load identification may be improved when high-frequency datasets are consid-
ered, the hardware is expensive and requires significant computation time for preprocessing
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and disaggregation in real-time scenarios [6]. In particular, the recent deep neural network
NILM algorithm (DNN-NILM) benefits from high-frequency data and outperforms tradi-
tional NILM algorithms [10–12]. Nonetheless, NILM algorithms may achieve satisfactory
accuracy with data sampled at low frequencies [13]. This is particularly useful because
low-frequency datasets are expected to become widely available in the future [14].

Despite the importance of energy data factors in determining the quality of disaggrega-
tion, non-electric factors also affect energy consumption in buildings. For instance, building
and consumer factors such as the dwelling type, total floor area, dwelling age, number
of occupants, and consumer education level affect energy consumption patterns [15–18].
For instance, a large number of occupants typically results in higher energy consumption.
In addition, the energy consumed in apartments is generally lower in comparison with
detached dwellings [19,20]. The impact of a building’s characteristics on appliance usage
patterns has been analyzed in recent research works. For instance, in [21], a methodology
was proposed to formalize the detection of appliance consumption patterns, which was
then used for the analysis of consumption profiles.

In order to improve load disaggregation analysis and practices, non-electric characteris-
tics have been suggested to be incorporated into NILM methodologies [22–24]. In particular,
in [24], an energy efficiency assessment method based on NILM was improved by consider-
ing both electric and non-electric data. The performances of NILM algorithms can also be
enhanced if the algorithms are optimized for specific dataset characteristics, such as usage
patterns and appliance types [25]. According to [26], algorithm optimization is particularly
important because the algorithms’ performances tend to deteriorate in new contexts, such
as those with usage patterns that are typically different from those the algorithms have
been trained on. Since the emergence of usage patterns may be associated with specific
non-electric characteristics, it is interesting to investigate the association between the quality
of disaggregation and the observed non-electric data.

In this work, a data-centric methodology is proposed for analyzing the overall effect
of building and consumer characteristics on the performances of NILM algorithms for indi-
vidual appliances. This involves estimating regression models for the performance samples
of specific building appliances that have previously been obtained for a group of buildings.
The regression models are composed of the characteristics that are more statistically signifi-
cant for describing the performance samples, along with the corresponding effects of each
characteristic. The methodology is applied in a realistic scenario for various appliances
and at different sample rates. The acquired results demonstrate that the methodology
captures the overall effect of each characteristic on the performance samples obtained and,
more specifically, that the magnitude of the effects varies depending on the appliance
under consideration.

The remainder of this paper is structured as follows. Section 2 presents the background
information and related work. Section 3 describes the proposed methods. Section 4 de-
scribes an experiment for the methodology’s assessment in a realistic scenario. In Section 5,
the experiment’s results are obtained and discussed. Finally, the main conclusions, limita-
tions, and an outlook on further research are provided in Section 6.

2. Related Work

In recent years, an increasing amount of research has been conducted to understand
and improve the data quality across machine learning disciplines [27]. Similar to other
domains, NILM research developments have mostly adopted model-centric approaches
due to the continuous progress of machine learning and deep learning algorithms [28].
As a result, several algorithms were proposed and often validated in a small number of
datasets. As a consequence of the growing number of collected and generated datasets,
many algorithms have poor performance when applied to different datasets [29]. Thus,
data-centric approaches for NILM have gained more attention, which enables the extraction
of valuable information from the data and improves energy disaggregation analysis.
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In the NILM community, there is growing interest concerning the analysis of non-
electric data, such as building and consumer characteristics, and how it affects the algo-
rithms’ performances. Indeed, load disaggregation analysis and practices may be improved
by including this type of characteristic [22,23,25,26].

In [30], a methodology was proposed for predicting the consumption of each appliance
based on the similarity of the building and consumer characteristics. The buildings are
grouped according to the similarity of their characteristics following a nearest neighbor’s
approach. Then, to predict the consumption in an untested building, an average across
similar buildings is calculated. Such a strategy, however, might not be helpful in the case of
unusual buildings or appliances. In [31], a feature-based matrix factorization approach was
proposed for predicting individual appliance consumption in buildings based on aggregate
data and observation of the building and consumer characteristics. In particular, it appears
that including building characteristics in the matrix factorization, such as the area and
number of occupants, increases disaggregation accuracy. This method has been shown to
improve the predictions in comparison with the method in [30].

In [32], a reverse approach was proposed in order to estimate building characteristics
using the results of energy disaggregation. The estimation process is directly affected by
algorithm selection. Hence, caution is required when making this decision.

From the previous works, there is evidence in favor of the association between build-
ing characteristics and disaggregation performance. When analyzing this association, it is
interesting to consider datasets that include both consumption data and building informa-
tion. However, this is not always the case for NILM datasets. In [25], the authors proposed
a framework that enables the generation of appliance consumption data by simulating
the building and consumer characteristics. Despite the fact that the data are synthetic,
the framework allows for the creation of numerous datasets that may be used to assess
how certain factors affect the algorithms’ performances.

In this paper, a data-centric approach is proposed in order to directly assess the effect
of building and consumer characteristics on disaggregation performance. With respect
to [31], the methodology complements the prediction of appliance consumption with the
characteristics that have a higher impact on each appliance. In comparison with [30],
this methodology aims to provide a more reliable method of evaluating the effect of a build-
ing’s characteristics on disaggregation accuracy. Although the framework proposed in [25]
enables the generation of synthetic data that might be used for assessing the methodology,
real-world data are initially used for evaluation in a more realistic context.

3. Methods

In this section, the proposed methodology for assessing the overall effect of non-electric
characteristics on the algorithms’ performances is presented.

Assume that M disaggregation algorithms are employed for estimating the individual
consumption of appliances app = 1, · · · , I from the aggregate data, sampled at f req Hz.
The disaggregation performance of the M algorithms for a specific appliance app across
the J buildings can be grouped into a matrix

[
Yapp

j,m, f req
]J,M

j=1,m=1 of dimensions J ×M.
Based on the previous disaggregation experiments, the overall effects of the character-

istics on the performance samples are assessed through regression analysis. A regression
model is fit to a performance sample [Yapp

j,m, f req]
m
j=1 for a given appliance app and disaggre-

gation algorithm m applied to data sampled at f req Hz:

fλ(Y
app
j,m, f req) = a1X1j + a2X2j + · · ·+ akXkj + b, (1)

where Xij, i = 1, · · · , k are the variables, the categorical variables are modeled as dum-
mies [33,34] (i.e., for each variable, l− 1 out of the total levels l enter the regression predictor
as binary variables, and the effect of each level is evaluated in relation to a level that was left
out (reference group)), ai are the regression coefficients, b is the intercept to be estimated,
abd fλ is any needed Box–Cox transformation (BCT) [35] to ensure that the distribution of
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[
fλ(Y

app
j,m, f req)

]J
j=1 is closer to the normal distribution than

[
Yapp

m, f req
]J

j=1, where fλ(y) =
yλ−1

λ

for λ ∈ [−5, 5] \ {0}; otherwise fλ(y) = log y for λ = 0.
In order to inspect if the performance samples

[
fλ(Y

app
j,m, f req)

]J
j=1 and

[
fλ(Y

app
j,m, f req)

]J
j=1

are normally distributed, the Shapiro–Wilk statistical test [36] is considered. According
to the test, there is evidence that the sample distribution originates from the normal
distribution if the p-value is greater than or equal to a threshold of 0.5. For supplementary
purposes, the histogram visualization and kernel density estimator (KDE) of the sample
distributions are also inspected.

Then, the variables to be included in Equation (1) are selected using the backward
stepwise selection (BSS) method [34], which estimates the coefficients ai and b. In the BSS,
the significance of each variable is determined by the p-value of the T statistic, which is
compared at each step to a reference value that is typically set to 0.01, 0.05, or 0.10. If the
p-value of the T statistic is inferior to the reference value, then the effect of the variable
is significant for explaining the disaggregation performance. In this work, the reference
value was set to 0.10, which relaxed the required statistical significance for a variable
to be included in the selected regression model. At each step of the BSS, the variable
with the highest p-value is excluded until all of the associated p-values are less than 0.10,
at which point the selected variables are returned. To assess the goodness of fit of the model,
the Durbin–Watson test and the coefficient of determination R2 are also examined at each
step of the BSS. The former determines whether the model residuals are auto-correlated.
In a case where there is no correlation, there is evidence for normality of the residuals.
The latter assesses how well the sample data fit the estimated regression model [33,34].

4. Experiment Specification

In this section, an experiment is designed in order to illustrate how the proposed
methodology can be applied.

4.1. Dataset and Non-Electric Characteristics

The REFIT Electrical Load Measurements (REFIT) dataset [37] was considered. This
dataset contains cleaned aggregate and individual appliance power consumption data
for 20 United Kingdom (UK) residential buildings (9 sub-metered appliances per house)
labeled with numbers {1, 2, · · · , 21} \ {14}. The data were originally timestamped and
sampled at 8 s for 2 years (2013–2015). The appliances considered were the washing
machine (WM), dishwasher (DW), and microwave (MW) over a year (from June 2014 to
June 2015). These appliances were chosen to illustrate the proposed methodology and also
because the corresponding consumption depends on the consumer’s usage patterns (human
activities and schedules), which are consequently associated with particular building and
consumer characteristics [38]. In contrast, cool appliances, such as the refrigerator and
freezer, are user-independent, operating continuously in cycles. Therefore, the impact of
the building and consumer characteristics on the disaggregation performance should be
small. By inspecting the REFIT dataset houses, there were 11 out of the 20 houses that
contained at least 1 WM, 1 DW, and 1 MW [37] (i.e., houses 2, 3, 5, 6, 9, 10, 11, 13, 15, 18,
and 20), which would be considered throughout the experiment.

The building and consumer characteristics that were available from the metadata were
the number of occupants (OC), dwelling size (S), number of appliances (AP), dwelling
age (DA) and dwelling type (DT). The term variable is used in this study to denote the
characteristics to be considered for the methodology. Observe that variable S is given as
the number of bedrooms because this is a more common measure of dwelling size in the
UK. The variable DA indicates the construction period of the dwelling. Additionally, the
variable AP indicates the total number of electrical appliances in the dwelling. From Table 1,
it can be seen that variables OC, S, and AP are integers, with minimum and maximum
values of (1,4), (15,49), and (3,4), respectively. In contrast, the variables DA and DT were
categorical, with the most frequent levels being 1965–1974 and detached, respectively.
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Table 1. Building and consumer characteristics for the REFIT dataset houses considered in the experiment.

Houses

2 3 5 6 9 10 11 13 15 18 20

OC 4 2 4 2 2 4 1 4 1 2 2

S 3 3 4 4 3 3 3 4 3 3 3

AP 15 27 44 49 24 31 25 28 19 34 39

DA - 1988 1878 2005 1919–
1944

1919–
1944

1945–
1964

post
2002

1965–
1974

1965–
1974

1965–
1974

DT SD D MT D D D D D SD D D

For the variable DT, the detached (D) type refers to stand-alone residential structures
without shared outside walls with buildings nearby. The semi-detached (SD) type is attached
to another building by one common party wall, while the mid-terrace (MT) type is similar to
SD, but it is situated in the middle of a row of similar houses.

Different data granularity scenarios are taken into account for each appliance to ensure
that all appliance activations are recorded over time and the disaggregation performance is
not composed of a lack of appliance activations. In this sense, an appliance activation refers
to any transition from the off state to one in which the appliance is switched on. For each
appliance, the data granularity scenarios are 1/60 Hz and 1/300 Hz for both the WM and
DW, respectively, and 1/30 Hz and 1/60 Hz for the MW. In contrast with the MW, smaller
data granularity is sufficient to cover all activations in the case of the WM and DW because
these appliances are generally activated for longer periods.

4.2. Disaggregation Experiments

The algorithms selected for the disaggregation experiments were the DNN-NILM
state-of-the-art benchmarks available in NILMTK [10], namely the denoise autoencoder
(DAE), sequence-to-point (S2P), and sequence-to-sequence (S2S) algorithms. These al-
gorithms have been shown to outperform the performance of conventional NILM algo-
rithms [11,12]. Despite the fact that high-frequency data yield higher performance for
these algorithms, low-frequency data may be adequate to run these algorithms with high
accuracy [13,14]. For each algorithm, the data were split between training and testing,
with 67% and 33%, respectively, allocated to each. The employed algorithms were trained
for 200 epochs with a batch size = 512 (i.e., for each of the 200 runs through the training set,
the learning algorithm examined 512 equally sized samples of the training set to update the
weights). These values were set for illustrative purposes, although the number of epochs
was chosen to be greater than in previous works (e.g., 50 epochs in [10]) to avoid potential
underfitting but also not too large for overfitting. The batch size was determined to be
between 64 and 1024, which were considered in [10,39], respectively.

4.3. Performance Metric and Model Selection

The mean absolute error (MAE) [14,40] was chosen over other metrics because it is
based on the L1-norm, which penalizes both small and large errors equally. In contrast,
for other metrics such as the root mean squared error (RMSE) [14,40], the performance can
be significantly impacted by large errors as opposed to smaller ones because it is based
on the L2-norm.

In this experiment, the algorithm that achieved the best performance across the build-
ings was selected for each case. Three indicators were considered for selecting the algorithm:
the frequency of the best performance (lower MAE) across the buildings, the MAE median,
and the MAE mean. The mean was chosen as an indicator based on the significance of the
two-sample Kolmogorov–Smirnov (TSKS) test [41], which tests if pairwise distributions
of [Yapp

j,m, f req]
J
j=1 for m ∈ {DAE, S2P, S2S} are identical. If the p-value for the KS statistic
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is larger than any of the significance levels of 0.01, 0.05, and 0.10, then there is evidence
that the two sample distributions under testing are identical. Since three algorithms were
considered, then M = 3 and (3

2) = 3 TSKS tests were run for each appliance and data
granularity. To simplify the notation when the best algorithm was selected, Yapp

j,m, f req took

the place of Yapp
j, f req. In addition, the performance sample was referred to as Yapp

f req.
In order to obtain the effects of the characteristics on the disaggregation performances,

the regression models from Equation (1) were then fitted for each appliance and data
granularity. The normality of the performance samples was inspected by considering the
Shapiro–Wilk test, histogram visualization, and KDE.

4.4. Hardware and Software

In terms of software, the experiment was conducted in Python 3.6.8. The DNN-
NILM algorithms were implemented in the NILMTK-Contrib [10] package using the DAE
architecture proposed in [39] and the S2S and S2P architectures in [11]. For the estimation
of λ for the BCT and to assess the normality of the performance samples Yapp

m, f req via the
Shapiro–Wilk test, the scipy package was employed. For model estimation, BSS was carried
out using the functionalities of the statsmodels package. The computer’s hardware included
an Intel i7− 8700k CPU, an NVIDIA 1080TI graphics card, and 64 GB of RAM. The code for
reproducing the experiments is available at https://anonymous.4open.science/r/Sensors_
SI-3AF3/.

5. Results and Discussion

In this section, the methodology is applied to the specified experiment for illustration.
At first, for each appliance, the disaggregation results are computed for the algorithms
considered across a set of buildings. Then, by employing the proposed methodology,
the overall effects of the building and consumer characteristics on the disaggregation
performance are estimated. Finally, the research findings are discussed.

5.1. Appliance-Level Analysis
5.1.1. Washing Machine

The disaggregation performances of the algorithms for the washing machine are
displayed in Table 2. For 1/60 Hz, the S2P had a lower MAE than the DAE and S2S for
10 out of 11 houses, as well as a lower MAE median across the houses. By computing the
TSKS tests for 1/60 Hz, the p-values of the KS statistic were larger than any p-value of
significance (i.e., pDAE,S2S

1/60 = 0.83, pDAE,S2P
1/60 = 0.48, and pS2P,S2S

1/60 = 1 are all greater than
0.10). Since there was evidence for the pairwise distributions to be identical, it was adequate
to use the MAE mean for comparison between the obtained performance samples. S2P was
also the algorithm with the lower MAE mean. Hence, S2P was chosen for disaggregating
the washing machine at 1/60 Hz.

Similarly, for 1/300 Hz, S2P seemed to attain the best performance across the houses
and a lower average MAE. From the TSKS tests for 1/300 Hz, it was adequate to consider
the MAE mean across the houses since there was evidence that the algorithms’ performance
samples were identical (i.e., pDAE,S2S

1/300 = pDAE,S2P
1/300 = pS2P,S2S

1/300 = 0.83 > 0.10). Therefore, S2P
was the chosen algorithm.

The S2P performance samples had small differences across the data scenarios, and the
conclusions were similar (Table 2), which indicates that the WM activations were captured
for both scenarios. If the data were sampled with lower granularity (e.g., one sample for
each 15 min), the disaggregation results could possibly show more differences between the
data scenarios.

https://anonymous.4open.science/r/Sensors_SI-3AF3/
https://anonymous.4open.science/r/Sensors_SI-3AF3/
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Table 2. Disaggregation performances of DAE, S2P, and S2S for the washing machine at 1/60-Hz
and 1/300-Hz data granularities. The indicators considered for selecting the best algorithm (orange)
were the FBP, MAE median, and MAE mean.

MAE (1/60 Hz) Indicators

Houses FBP Median Mean

2 3 5 6 9 10 11 13 15 18 20

DAE 32.30 27.01 46.16 5.49 15.58 30.69 10.21 16.69 5.65 3.27 7.74 0 15.58 18.25
S2P 15.62 19.98 39.37 3.07 11.63 19.26 4.85 10.21 3.33 1.32 4.85 10 10.21 12.14
S2S 18.94 19.87 42.71 3.97 12.56 21.66 4.90 11.21 3.89 1.40 6.39 1 11.21 13.41

MAE (1/300 Hz)

DAE 20.46 30.74 44.40 6.23 14.68 26.34 7.97 17.21 5.95 3.29 7.17 0 14.68 16.77
S2P 16.55 19.72 41.39 2.96 12.01 18.73 6.80 10.72 3.60 2.21 6.26 7 10.72 12.81
S2S 19.99 20.05 44.00 3.76 11.09 20.01 6.75 9.63 3.92 2.34 5.20 4 9.63 13.34

In order to inspect the overall effects of the characteristics, the S2P performance sam-
ples YWM

1/60 and YWM
1/300 (or a transformation of these samples) were fitted to a regression model

as in Equation (1). From the Shapiro–Wilk test, there was evidence that the sample distri-
butions were not normally distributed (i.e., p1/60 = 0.04 < 0.5, and p1/300 = 0.02 < 0.5).
The fitted λ for the BCT was close to zero in both cases (i.e., λWM

1/60 ≈ 0.10 and λWM
1/300 ≈ 0.03)

and were thus approximated to zero (log-transformation) to facilitate further interpretation.
When the log-transform was considered for YWM

1/60 and YWM
1/300, the p-value of the

Shapiro–Wilk test improved (i.e., plog
1/60 = 0.87 > 0.5 and plog

1/300 = 0.86 > 0.5). This is also in-
dicated through the histogram visualization and KDE in Figure 1, with the log-distributions
of YWM

1/60 and YWM
1/300 closer to the normal distribution and, in particular, more symmetric.

Figure 1. Histogram and KDE of the S2P performance samples for the washing machine for both
data scenarios, YWM

1/60 (left) and YWM
1/300 (right), and respective log-transformations.

The selected models are represented in Equation (2){
log(YWM

1/60,j) = 0.80×OCj + 0.98
log(YWM

1/300,j) = 0.71×OCj + 1.36
(2)

for j = 1, · · · , 11 by carrying out BSS across the variables in Table 1. Although the variable
DA could be relevant for explaining appliance consumption patterns, it was not considered
because it comprised a large number of levels (seven in total), each of which was not
sufficiently represented due to the small number of houses in the datasets. Furthermore,
some DA levels were redundant (e.g., post 2002 and 2005), and there was a missing value
for house 2. In contrast, for the variable DT, the number of levels was smaller, each of
which was represented more. The reference group for DT was chosen to be D (without loss
of generality).
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By inspecting Equation (2), it seems that the dwelling size, number of appliances,
and dwelling type had no significant impact on the disaggregation performance for both
data scenarios because these variables were not included in the selected models (estimated
coefficients equal to zero). In contrast, the characteristic with a higher impact on disag-
gregation of the washing machine was the number of occupants for both data scenarios.
The average effect of an integer variable on the disaggregation performance sample for a
one-unit increase while the remaining variables were fixed was equal to (ea − 1)× 100%,
where a is the estimated variable coefficient. In a similar fashion, the average impact of the
dummies was calculated in relation to the chosen reference group when using the same
formula. In the context of the disaggregation problem, if the variable coefficient is negative,
then the performance improves, and vice-versa.

Hence, if the number of occupants is increased by one unit, with the remaining
variables being fixed, then the disaggregation performance decreases, on average, by a
factor of 1.23 for 1/60 Hz (1.03 for 1/300 Hz). For the remaining characteristics, the effects
are not relevant.

5.1.2. Dishwasher

The disaggregation results for the DW in Table 3 demonstrate that S2S achieved
the best performance overall in both data scenarios. For 1/60 Hz, the MAE median and
MAE mean for S2S were improved in comparison with the other algorithms. Since the
distributions of the performance samples appeared to be the same in the TSKS tests,
using the mean for comparison was appropriate (i.e., the p-values of the KS statistic
pDAE,S2S

1/60 = 0.83, pDAE,S2P
1/60 = 1, and pS2P,S2S

1/60 = 1 were all greater than 0.10).
Similarly, for 1/300 Hz, S2S attained the best performance across the houses in general

and a lower MAE median and MAE mean. Again, the TSKS tests show that it is ade-
quate to use the mean for comparison of the performance samples (i.e., pDAE,S2S

1/60 = 0.83,

pDAE,S2P
1/60 = 0.83, and pS2P,S2S

1/60 = 1 were all greater than 0.10).

Table 3. Disaggregation performances of DAE, S2P, and S2S for the dishwasher at 1/60-Hz and
1/300-Hz data granularities. The algorithm that attains the best overall performance is selected
(orange).

MAE (1/60 Hz) Indicators

Houses FBP Median Mean

2 3 5 6 9 10 11 13 15 18 20

DAE 43.51 28.29 27.23 4.51 18.83 31.11 6.69 62.11 1.27 4.77 6.05 2 18.83 21.31

S2P 53.99 21.26 26.86 3.70 17.93 28.17 5.60 72.66 0.50 4.80 3.94 5 17.93 21.76
S2S 45.07 24.07 23.20 3.61 16.82 30.21 5.72 66.44 0.72 4.15 4.27 4 16.82 20.39

MAE (1/300 Hz)

DAE 28.34 28.25 27.90 5.10 17.49 33.89 5.61 77.68 0.58 5.21 3.74 1 17.49 21.25

S2P 26.95 20.32 20.41 5.42 12.34 33.20 4.24 77.33 0.92 3.80 3.94 3 12.34 18.99
S2S 26.41 20.58 22.12 8.32 12.28 31.72 3.68 73.21 0.49 4.58 3.17 7 12.28 18.78

In this case, the S2S performance samples exhibited some differences across the data
scenarios, mainly for houses 2, 6, and 13. Hence, it is possible that a fraction of dishwasher
activations at 1/60 Hz were also not detected for 1/300 Hz.

The S2S performance samples across the houses, denoted as YDW
1/60 and YDW

1/300, were
fitted to a regression model. From the the Shapiro–Wilk test, the sample distributions did
not seem to be normally distributed (i.e., p1/60 = 0.05 < 0.5 and p1/300 = 0.01 < 0.5).
A BCT is suggested to be carried out with λDW

1/60 ≈ 0.20 and λDW
1/300 ≈ 0.21. Since these

values were close to zero, the log transformation was used to approximate the BCT. Indeed,
the p-value of the Shapiro–Wilk test improved when the log-transform was considered
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(i.e., plog
1/60 = 0.47 ≈ 0.5 and plog

1/300 = 0.64 > 0.5). This can also be observed through the
histogram visualization and KDE in Figure 2, in which the log-distributions are closer to
the normal distribution. The selected regression models are represented in Equation (3)
using BSS: {

log(YDW
1/60,j) = 1.37×OCj − 0.11× APj − 2.80× DT_SDj + 3.71

log(YDW
1/300,j) = 1.36×OCj − 1.68× DT_SDj + 0.12

(3)

Figure 2. Histogram and KDE of the S2S performance samples for the dishwasher for both data
scenarios, YDW

1/60 (left) and YDW
1/300 (right), and respective log-transformations.

According to Equation (3), the dwelling size had no relevant effect on the performance
for both scenarios. For 1/60 Hz, a one-unit increase in the number of occupants, with the
remaining variables held constant, reduced the performance by a factor of 2.94 (similar to
1/300 Hz) on average. Furthermore, if the dwelling was semi-detached, this improved the
performance by 94% (81% for 1/300 Hz) when compared with a detached dwelling type.
The number of appliances did not seem to be significant for explaining the performance
because the effects of this variable varied depending on the data scenario considered.
For 1/60 Hz, a one-unit increase in the number of appliances improved the performance
by 10% on average, although this variable had no significance for 1/300 Hz.

5.1.3. Microwave

The disaggregation results for the MW in Table 4 show that S2P performed the best
overall for either the 1/30-Hz or 1/60-Hz granularities. For 1/30 Hz, the MAE median and
MAE mean were lower for S2P. The mean was adequate to be considered for comparison,
as the TSKS tests indicated that the performance samples followed similar distributions
(i.e., the p-values of the KS statistic pDAE,S2S

1/60 = pDAE,S2P
1/60 = pS2P,S2S

1/60 = 1 were all greater
than 0.10).

For 1/60 Hz, S2P attained the best performance for most houses and also had a lower
MAE median and average MAE. Again, the TSKS tests indicated that the performance
samples followed similar distributions (i.e., pDAE,S2S

1/60 = pDAE,S2P
1/60 = 0.48, and pS2P,S2S

1/60 = 1
were all greater than 0.10). Similar to the washing machine, there were no significant
differences in the S2P performance samples across the two data scenarios).

The S2P performance samples YMW
1/30 and YMW

1/60 were then fitted to a regression model.
From the Shapiro–Wilk tests, the sample distributions did not seem to come from a normal
distribution (i.e., p1/30 ≈ 0 < 0.5 and p1/60 ≈ 0 < 0.5). A BCT was suggested with
λMW

1/30 ≈ 0.03 and λMW
1/60 ≈ −0.19. Since these values were relatively close to zero, the log

transformation was considered. Indeed, the p-value of the Shapiro–Wilk test for the log-
distributions of YMW

1/30 and YMW
1/60 improved (i.e., plog

1/30 = 0.58 > 0.5 and plog
1/60 ≈ 0.21 < 0.5).

This is also indicated by inspection of the histograms and KDE, as shown in Figure 3.
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Table 4. Disaggregation performances of DAE, S2P, and S2S for the microwave at 1/30-Hz and 1/60-
Hz data granularities. The algorithm that attains the best overall performance is selected (orange).

MAE (1/30 Hz) Indicators

Houses FBP Median Mean

2 3 5 6 9 10 11 13 15 18 20

DAE 3.50 4.06 21.27 4.38 1.98 2.15 1.61 17.46 0.60 2.11 7.04 0 3.50 6.01
S2P 2.86 3.72 16.85 4.21 1.73 1.65 2.83 15.27 0.41 1.91 5.53 5 2.86 5.18
S2S 3.06 3.67 18.28 4.18 1.66 1.65 1.46 16.00 0.48 2.07 5.07 5 3.06 5.23

MAE (1/60 Hz)

DAE 4.24 4.93 21.82 5.06 2.02 2.61 1.57 15.96 0.63 2.35 5.16 1 4.24 6.03
S2P 2.95 3.89 16.39 3.74 1.89 1.57 2.82 18.56 0.55 2.01 2.07 6 2.82 5.13
S2S 3.62 3.63 18.05 4.14 1.58 1.61 1.42 17.74 0.53 2.03 3.90 4 3.62 5.30

The selected models’ interpretations were similar for both data scenarios, as observed
in Equation (4): {

log(YMW
1/30,j) = 2.29× Sj − 5.81

log(YMW
1/60,j) = 2.41× Sj − 6.26

(4)

It seems that the number of occupants, the number of appliances, and the dwelling
type had no significant effect on the disaggregation performance. In contrast, the dwelling
size was the characteristic with a higher impact. By increasing the number of bedrooms
in one unit, the disaggregation performance decreased on average by a factor of 8.87 for
1/30 Hz (10.13 for 1/60 Hz).

Figure 3. Histogram and KDE of the S2P performance samples for the microwave for both data
scenarios, YMW

1/30 (left) and YMW
1/60 (right), and respective log-transformations.

5.2. Discussion

In this subsection, the results obtained in the previous experiment are discussed. As
can be seen in Table 5, the building and consumer characteristics had varying effects on the
disaggregation performance, depending on the appliance analyzed and considering the
algorithm that achieved the best overall performance across the buildings.

Table 5. Summary of the building and consumer characteristics with statistically significant and
irrelevant effects for the appliances considered in the experiment. Relevant positive effects are
indicated by “+”, while negative effects are indicated by “−”.

Appliance Significant Effects Irrelevant Effects

Washing Machine OC(+) S, DT, APP

Dishwasher OC(+), DT_SD(−) S, APP

Microwave S(+) OC, APP, DT
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For the WM models, the number of occupants was the only relevant characteristic for
explaining the disaggregation performance (Table 5). Because the effect was positive, a large
number of occupants decreased the disaggregation performance on average. According
to [15], a higher energy consumption is expected when the number of occupants is large.
In this experiment, the average number of WM activations (at 1/60 Hz) across the houses
with 2 occupants was equal to 69.6, whereas the number of activations was equal to 118.4
for houses with 4 occupants, which is obviously higher. When there are more appliance
activations, the learning ability of the algorithms may be reduced because there are more
usage patterns to correctly identify. This is consistent with the positive effect for the number
of occupants.

Concerning the DW models, the conclusions were slightly different for the two data
scenarios. The number of appliances was included in the regression model for 1/60 Hz.
However, the number of appliances did not seem to be completely relevant for explaining
the performance, as its significance varied depending on the data granularity. The 9 sub-
metered appliances accounted for an average of 41% of the total energy consumed across
the houses, while the remaining appliances only accounted for a minor fraction of the
total energy. The latter appliances were either not used regularly or for long periods of
time, and thus their share in the house consumption was more meaningful for larger data
granularities, such as 1/60 Hz, than for smaller granularities, where their consumption
was not relevant. The number of occupants and dwelling type (semi-detached) seem
to be relevant characteristics for both data scenarios (Table 5). Because the effect of the
number of occupants is positive, a large number of occupants decreases the disaggregation
performance, with a similar interpretation as that for the WM. If the dwelling type is
semi-detached, then the disaggregation performance is expected to improve in comparison
with detached dwellings (negative effect). By inspecting the houses used in the experiment,
the amount of energy consumed by DWs in semi-detached houses was roughly equal to 3%
during the test period, while for detached houses, it was roughly equal to 1.6%. This finding
suggests that DW consumption is higher for semi-detached houses in comparison with
detached houses and consequently may improve the learning ability of the disaggregation
algorithm. Nevertheless, the dwelling type can be correlated with other indicators, such as
house income, which were not recorded in the dataset but may help to interpret the results.

Concerning the MW models, the dwelling size was the only relevant characteristic for
explaining the disaggregation performance, having a positive effect (Table 5). With each
additional bedroom, the disaggregation performance decreased on average. By inspecting
the houses in the test period, the average number of MW activations was roughly equal to
140 for houses with 3 bedrooms, while for houses with 4 bedrooms, it was roughly equal to
282. Similar to the WM, additional WM activations may compromise the learning ability of
algorithms because more usage patterns would need to be correctly identified.

The number of appliances seemed to be an irrelevant characteristic for all appliances,
which seems to be consistent with the fact that nine appliances that were sub-metered for
all buildings accounted for a sizable portion of the total energy consumed. Additionally,
according to [17], semi-detached dwellings tend to be more energy efficient than detached
dwellings. The validity of this statement could be further investigated in the case of DWs.
Although the dwelling size was a relevant characteristic for MWs, it was not relevant
for WMs or DWs, which seems to be consistent with the fact that large buildings are not
necessarily fully occupied [17], compromising potential associations. This effect should be
further investigated.

Concerning WMs and MWs, the findings were very similar for both data scenar-
ios. However, the sample rate can be a determining factor in the results and is worth
investigating, as was observed for the DWs. Additionally, the DW models were more com-
plex than the WM and MW models because more variables were selected for explaining
the performance.

Therefore, the experiments carried out in Section 5.1 demonstrate that the methodology
allows for the identification of the non-electric characteristics that are more statistically



Sensors 2022, 22, 6914 12 of 16

significant for explaining the obtained disaggregation performances and estimating their
respective effects. The estimated effects may vary depending on the appliance and data
scenario considered. The methodology was also shown to be relatively simple, flexible,
and generalizable to a larger number of buildings. In fact, the estimated effects of the
characteristics for each appliance are expected to be more accurate if a larger set of buildings
is considered.

6. Conclusions

The methodology presented in this work provides a flexible and understandable
analysis of the overall effects of non-electric characteristics on the performance of NILM
algorithms for specific appliances. The REFIT dataset was used to illustrate the method-
ology in a realistic scenario. The overall impact of the non-electric characteristics on the
performance of algorithms was analyzed for various appliances across a set of buildings
at different sample rates. The experiment’s results led to the conclusion that the magnitude
of the effects of the non-electric characteristics vary depending on the appliance analyzed.
In addition, the magnitude of the effects can be affected in case the selected sample rates
impact the detection of appliance usage. Therefore, the methodology can be used to com-
plement the NILM analysis with data that indirectly impacts the consumption data. In the
next subsections, the implications and potential applications of this research work are
addressed, as well as its limitations and further research.

6.1. Research Implications and Potential Applications

The experimental results demonstrate that the effects of each characteristic on the
algorithms’ performances varied depending on the appliance analyzed, which may di-
rectly affect consumption estimation and usage pattern and anomaly detection. Therefore,
a research implication of this work would be to incorporate the methodology into NILM
analysis. With respect to [25], the disaggregation algorithms could be optimized for the
characteristics with a more noticeable impact on the performance. A potential application
would be to provide a more detailed analysis of the overall energy efficiency in a building,
as well as the creation of energy communities.

Moreover, based on the estimated regression models, the proposed methodology
may be used to predict the disaggregation performances for the individual appliances.
The performance could be estimated in untested buildings if the non-electric characteristics
were observed. For buildings with similar characteristics, the regression models estimated
similar disaggregation performances.

Furthermore, this methodology can also motivate further research on the topic of
load disaggregation complexity in terms of the non-electric characteristics that go beyond
electric signals. With respect to [12,42], the proposed methodology can complement the
results of complexity measurements based on appliance states and time-series similarity,
with more information on other characteristics that constitute the building environment.

6.2. Limitations and Future Work

Although the methodology presented in this work can improve NILM analysis, there
are some limitations regarding the experiment’s specifications and methods that should be
taken into consideration.

In terms of the experiment’s specifications, the selected algorithms for each case were
limited to M algorithms. Despite the employed DNN-NILM algorithms being state-of-the-
art and widely used for benchmarking disaggregation performance, it would be adequate
to use more algorithms for comparison. For instance, WindowGRU [43] is also a DNN-NILM
algorithm that could be included. Furthermore, although the MAE is a standard metric for
evaluating disaggregation performance in energy estimation, it was not normalized, which
affected the comparison among NILM approaches. Therefore, it would be adequate to use
a normalized metric to supplement the interpretation of the results, such as the normalized
RMSE [14] or normalized disaggregation error (NDE) [40].
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Furthermore, the sample rates for each appliance should be chosen accordingly. Oth-
erwise, the effects of some characteristics can vary significantly across data scenarios and,
in certain cases, be misleading. For each appliance, it would also be interesting to consider
additional suitable sample rates and examine how much the variables’ effects vary, such
as using lower sample rates for washing machines and dishwashers in comparison with
the microwave, because the former appliances generally have longer activation times.

This methodology also depends on the availability of non-electric data. However, due
to privacy concerns, this type of data is frequently unavailable in datasets. In this work, four
building and consumer characteristics were considered in the analysis. However, a number
of characteristics that possibly impact energy consumption patterns were not included in
the dataset, such as consumer education level and income [15,17]. Although data privacy
is an important concern related to the collection of these types of data, this work can
motivate the creation of more energy datasets that either keep data privacy or record
non-electric data.

The selected regression models for each appliance are also influenced by the number
of buildings recorded in the dataset. In this work, a total of 11 buildings—a relatively
small sample—was taken into account. The dwelling age was not considered because
the variable levels were not sufficiently represented. The effects of the variables in the
selected models are more accurate when larger samples of buildings are considered. For a
greater generalization, the proposed methodology could be applied to datasets with larger
numbers of buildings, such as the Fresh Energy [44] and HES [45] datasets with 200
and 250 buildings, respectively. Another option would be to consider synthetic data for
methodology evaluation, which could be generated based on the simulation procedure
in [25].

Finally, the selection of models for each appliance depends on the reference p-value
chosen for the BSS, which impacts the effects of the characteristics. The reference p-value
was chosen to be 0.10, but other significance levels could be considered, such as 0.05 and
0.01. Finally, the inclusion of nonlinear functions of variables in the regression model could
be tested, such as polynomials [33], and they might be evaluated to analyze whether the
effects of characteristics are nonlinear.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Number of appliances
BCT Box–Cox transformation
BSS Backward stepwise selection
D Detached
DA Dwelling age
DAE Denoise autoencoder
DNN-NILM Deep neural network NILM algorithms
DT Dwelling type
DW Dishwasher
KDE Kernel density estimator
MAE Mean absolute error
MT Mid-terrace
MW Microwave
NDE Normalized disaggregation error
NILM Non-intrusive load monitoring
OC Number of occupants
RMSE Root mean squared error
S Dwelling size
S2P Sequence-to-point
S2S Sequence-to-sequence
SD Semi-detached
TSKS Two-sample Kolmogorov–Smirnov
UK United Kingdom
WM Washing machine
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