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ABSTRACT
The problem of appliance recognition is one of the most relevant
issues in the field of Non-Intrusive-Load-Monitoring; its impor-
tance has led, in recent years, to the development of innovative
techniques to try to solve it. The use of methods such as V-I tra-
jectory, Fryze Theory Decomposition and Weighted Recurrence
Graph have proved effective in recognising both single (Single Label)
and multiple active appliances (Multi Label). This paper presents a
new way of approaching the problem by unifying Single Label and
Multi Label learning paradigms. The proposed approach exploits
feature extraction techniques which allow the detection of both
activated/deactivated appliances and all active appliances given
aggregate current signal. We evaluate the proposed approach on
a PLAID dataset. The obtained results indicate combining single-
label and mult-label learning strategies for appliance recognition
provides improved classification results with an F-score of 0.91.
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1 INTRODUCTION
One of themain sub-tasks of Non-Intrusive LoadMonitoring (NILM)
is appliance recognition, its aim is to recognize which appliance
is activated by analysing energy measurements and classifying
appliances through machine learning techniques. This problem can
be approached from two perspectives: in the Single-Label approach,
the goal is to recognize appliances using the individual device’s
on/off signals; on the other hand, in the Multi-Label approach, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NILM ’22, November 9–10, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9890-9/22/11. . . $15.00
https://doi.org/10.1145/3563357.3566153

aggregate signal is used to understand which devices are activated
and which are not. [1]-[13]-[10]

A major challenge is to solve the two problems simultaneously;
many works offer interesting solutions by addressing these with
innovative feature extraction and classification techniques, but in
a separate way. It has been shown how using Weighted Recur-
rence Graphs can help increase the performance of classification
algorithms about appliance recognition [2], as well as using pre-
processing techniques based on Fryze theory decomposition [4].

In order to provide a more accurate classification, deep neural
networks are increasingly being used in the NILM [5]-[7]; their ef-
fectiveness is, however, undoubtedly constrained by the availability
of rich data. For this reason, high-frequency signal data are often
used, allowing for more efficient training of this network. [6]-[15]

The main focus of this work is to open up a new challenge,
namely to tackle the two problems mentioned above using a single
algorithm capable of combining the two tasks in such a way that the
information sharing of the two models can increase performance.
So far, a combined algorithm has been created and tested that
would homogeneously share information from the two models.
Still, it would be of great interest to create one that would allow the
exchange of information between the two in an optimized manner.
The proposed method was tested on the publicly available Plug-
Load Appliance Identification Dataset (PLAID) [8].

2 METHODOLOGY
The proposed work aims to detect which appliance 𝑚 has been
switched on or off and simultaneously estimate the state 𝑠𝑚 (𝑡) of
all 𝑀 appliances from the aggregate current and voltage signal
𝑥 (𝑡), for𝑚 = 1, . . . , 𝑀 . The aggregate signal can be described by
Equation (1):

𝑥 (𝑡) =
𝑀∑︁

𝑚=1
𝑦𝑚 (𝑡) · 𝑠𝑚 (𝑡) + 𝜎 (𝑡) (1)

where𝑦𝑚 (𝑡) represents the individual appliance measurements and
𝜎 (·) the noise contribution.

2.1 Problem formulation
The problem can be formulated as follows: let A ∈ R𝑇×𝑑1 be the
set of the input features obtained from the measurements of the
switched-on or switched-off appliance, computed from the aggre-
gate signal like the difference between the before and after the
event; let X ∈ R𝑇×𝑑2 be the aggregated signal values after an
event; M = {1, . . . , 𝑀} the set of indices representing each appli-
ance; Y ∈ R𝑇×𝑀 the set of each appliance measurement composing
the aggregate signal and s(𝑡) = [𝑠1 (𝑡), . . . , 𝑠𝑀 (𝑡)] the vector con-
taining the state of each appliance at time 𝑡 ∈ {1, . . . ,𝑇 }, where
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𝑠 𝑗 (𝑡) ∈ {0, 1}. Then, given a dataset D = {a(𝑡),𝑚, x(𝑡), s(𝑡) |a(𝑡) ∈
A,𝑚 ∈ M, x(𝑡) ∈ X, 𝑡 = 1, . . . ,𝑇 }, the aim is to train a classifier that
can predict at the same time 𝑡 which appliance𝑚 is activated and
the state vector s(𝑡) using a(𝑡), x(𝑡). It is important to note that
whenever at instant 𝑡∗ one of the𝑚 devices is switched on or off,
the current and voltage consumption are added or subtracted to
the aggregate consumption 𝑥 (𝑡∗). Hence, this work assumes that
appropriate information sharing during the training phase of both
models will allow each task to be solved more efficiently. We will
refer to the first task as Single Label problem and the second one as
Multi Label problem.

2.2 Pre-processing and Feature Extraction
In this work, features derived from the current and the voltage
of switching appliances on/off were used in the Single Label case;
features derived from the aggregate current and aggregate voltage
were used in the Multi Label case. In both cases, these are high-
frequency measurements and one-cycle steady-state current 𝑖 (𝑡)
and voltage 𝑣 (𝑡) signals were used, extracted as in [2], [3].

With the application of Fryze Theory Decomposition, which
has been shown to improve performances because it can provide
a distinctive feature for classification [14], these features are sub-
sequently used to calculate the decomposed current features, i.e.
given the signals 𝑖 (𝑡) and 𝑣 (𝑡), it is possible to decompose 𝑖 (𝑡) into
two components via Equation (2):

𝑖 (𝑡) = 𝑖𝑎 (𝑡) + 𝑖 𝑓 (𝑡) (2)

where 𝑖𝑎 (𝑡) and 𝑖 𝑓 (𝑡) represent respectively the active and non-
active components of the current.
Once this is done, the Piece-wise Aggregate Approximation is used
to reduce the dimensionality of the feature to a predetermined𝑤 ,
set to 50 in our work.

To the current signals thus obtained the Euclidian distance func-
tion is then applied:

𝑑 𝑗𝑘 = ∥𝑖 (𝑡) 𝑗 − 𝑖 (𝑡)𝑘 ∥2

In this way, the relationship between active and non-active cur-
rent is measured. These distances can also be interpreted as the
entries of the distance similarity matrix 𝐷 ∈ R𝑤,𝑤 for the points
𝑖 (𝑡)1, . . . , 𝑖 (𝑡)𝑤 :

𝐷 =


0 𝑑12 · · · 𝑑1𝑤
𝑑21 0 · · · 𝑑2𝑤
.
.
.

.

.

.
. . .

.

.

.

𝑑𝑤1 𝑑𝑤2 · · · 0


Finally, this matrix is used to calculate the Weighted Recurrence
Graph matrix𝑊𝑅𝐺 = [𝑟 𝑗𝑘 ] with:

𝑟 𝑗𝑘 =

{
𝛿 if 𝜏 > 𝛿

𝜏 otherwise

where 𝜏 =

⌊
𝑑 𝑗𝑘

𝜖

⌋
and the parameters 𝛿 and 𝜖 are chosen, in our

case, both equal to 10.
This matrix is then used as input for the classifier, which in our

case is a Convolutional Neural Network. The described algorithm
is summarized in Figure 1.

Figure 1: Block diagram of the proposed algorithm. The dot-
ted block shows the training phase of the two classifiers, in
which they learn by using the same combined loss function.

2.3 Combined Model
The main part of this paper is to give an idea of how the two prob-
lems can be approached from amulti-task perspective using a single
algorithm. The idea was, therefore, to train two different classifiers,
one for the single-label case and one for the multi-label case, which
would share the information of the respective features in the learn-
ing phase. We propose two CNNs with the same structure for both
problems, the only difference being the output size. Each classifier
consist of four-stage CNN layer each with 16, 32, 64 and 128 fea-
ture maps, 1 × 1 strides and each layer uses a 3 × 3 filter size. The
four layers are followed by a batch normalization layer and a Relu
activation function, and the last layer is followed by an adaptive
average pooling layer with an output size 1 × 1. The output layer
consists of two fully connected layers with hidden size, 1024 and
𝑀 , in the Single Label case, or 2𝑀 , in the Multi Label case, where
𝑀 is the number of available appliances. For both cases, the final
predictions are obtained by applying the logarithmic softmax.

In the first case, the algorithm’s output can be interpreted as a
vector whose components represent each appliance’s logarithm of
the probability of activation or deactivation. Similarly, in the second
case, the output represents two vectors containing the logarithm
of the probability of each device being switched on or off.

To allow the parameters of the two models to share information
during the learning phase, backpropagation was used to optimise a
combined objective function defined by the equation:

L𝑐𝑜𝑚𝑏 (m, m̂, s, ŝ) = L𝑠𝑙 (m, m̂) + L𝑚𝑙 (s, ŝ) (3)

where L𝑠𝑙 , L𝑚𝑙 represent the loss function in the Single-Label and
in the Multi-Label case respectively. For both cases, the Negative
Log-Likelihood Loss function is used [9].
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The mini batch Stochastic Gradient Descent with a momentum
of 0.9 and lerning rate of 0.001 is used to train the single-label model
and an Adam optimizer with the same learning rate and betas of
(0.9, 0.98) is used to train the multi-label model. The combined
model is then trained for 300 iterations using a batch size equal
to 16 and to avoid the over-fitting we used an early-stopping with
patience where the training phase is stopped once the validation
performances don’t change after 100 iterations.

The use of a combined loss to allow simultaneous training be-
tween the twomodels can be improved by introducing some penalty
parameters to be added during the learning phase. Although the re-
sults of our approach, described in the Section 4, are interesting, the
purpose of this paper is to propose a new approach to the problem
and offer an idea for an improvable solution.

3 EVALUATION
3.1 Dataset
The proposed algorithm was tested on the PLAID dataset. This
public dataset contains records, collected at high frequency (30kHz),
measuring the individual current and voltage of 17 devices and the
aggregate current and voltage of the combination of 13 of these. The
data was collected at 65 locations in Pittsburgh, Pennsylvania (USA).
In order to test our algorithm, 1046 activation and deactivation
current and voltage measurements were extracted from 12 different
individual appliances. This set of 2092 samples was used for the
single-label part of our model. Each of these samples corresponds
to the aggregated current and voltage measurements; when one or
more devices are switched on or off consecutively, resulting in 2092
aggregated current and voltage samples used for the multi-label
part of the model. The Figure 2 shows an example of the signals
used, namely, a Fan current activation cycle, a Vacuum current
activation cycle and the two appliances aggregated current cycle
are illustrated.

Figure 2: Extracted activation currents for two different
events and the extracted aggregate current for these two
events.

The Figure 3 summarises the distribution of extracted appliances
and the number of active appliances in the 2092 samples.

3.2 Performance metrics
In order to evaluate the performance of our model, several metrics
were used. The four main metrics used are Recall, Precision, and
F1 score [11, 12]. These metrics were calculated to monitor the
performance of the individual appliances in the two models to

Figure 3: Appliances distribution on the extracted 2092 events
(on the left) and the active appliances distribution (on the
right).

understand where one model could perform better than the other
and study a way to combine the two strategies

Recallmacro =
1
𝑀

𝑀∑︁
𝑖=1

Recall(𝑖 )

Precisionmacro =
1
𝑀

𝑀∑︁
𝑖=1

Precision(𝑖 ) F1macro =
1
𝑀

𝑀∑︁
𝑖=1

F1(𝑖 )

where Recall(𝑖 ) , Precision(𝑖 ) , F1(𝑖 ) are the metrics computed for
the 𝑖-th appliance and𝑀 is the number of total appliances.

3.3 Training and Testing
Our approach is benchmarked using the multi-label stratified 3-fold
Cross Validation; in this way, in addition, to avoid overfitting, the
label percentages in each fold are fixed.

Although the classifiers’ training phase takes place simultane-
ously and optimises the same loss function, it should be emphasised
that the single-label classifier is trained using only the features
extracted from the current and voltage signals of the appliance
switched on or off. In contrast, the multi-label classifier uses the
features from the aggregated signals.

During the test phase, predictions are computed considering the
maximum logarithmic softmax output, and 30% of the data for each
fold is used. The predictions of each fold are then merged into a
single sequence to assess average performances.

4 RESULTS
The Figure 4 represents the performances for each appliance of
the two simultaneously trained models, and it contains the metrics
described in the previous Section.

As can be seen by looking at the values of the metrics, for some
appliances, there is a difference in performance between the two
tasks (for instance, Fan or Blender); our idea is that by properly
combining the two classification strategies themodel with the better
performance can help increase the performance of the other.

Although not comparable, the two classifiers have similar good
characteristics from the point of view of general performance. The
Table 1 summarises the general performance.

A miss-classification error analysis was also carried out to un-
derstand whether the switching on or off of some appliance could
cause errors not common to both models and, in this way, to think
about how the model that makes mistakes could learn from the
model that does not make mistakes.
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Figure 4: Per-appliance F1 score, Recall and Precision on the
PLAID dataset. Single Label (left),Multi Label (right).

Table 1: Generalisation performances between Single Label
model andMulti Label model on the PLAID dataset.

Single Label Model Multi Label Model

Recallmacro 0.913 0.889
Precisionmacro 0.913 0.944
F1macro 0.910 0.915

Figure 5 illustrates the number of these errors, they are divided
into errors committed only by one model and common errors; more
precisely, errors committed only by the single-label model but not
by the multi-label model (Only SingleLabel Errors), those committed
by the multi-label model but not by the single-label model (Only
MultiLabel Errors), and those committed by both algorithms (Com-
mon Errors) are counted.

It can be seen from the graph that in the case of the Laptop, for
example, the multi-label model makes many more errors than the
single-label model; appropriate information sharing between the
two models could lead to a reduction in the number of errors.

The confusion matrix related to the predictions of the single-
label model, illustrated in Figure 6, points out, for example, that a
good number of errors made by the classifier are related to the Air
Conditioner and also that most of these are related to deactivation
events. In this case, the multi-label model could help the single-label
classification.

5 CONCLUSION
In this paper, we proposed an approach to address two types of
appliance recognition problems simultaneously; single and multi-
label appliance recognition. The paper aims to motivate the search
for a model capable of sharing information between two classifiers
under training to improve appliance recognition.

Our approach, albeit in a primitive form, was tested on the public
dataset PLAID to prove its effectiveness. In fact, from the results
obtained, it seems that the proposed method can offer an excellent
basis to address and solve the problem. In addition, we think the

Figure 5: Number of incorrect predictions (during the testing
phase) divided into errors committed by the Single Label
model only, theMulti Labelmodel only and those committed
by both models (Common Errors).

Figure 6: Confusion matrices of Single Label model predic-
tions. On the left only the predictions for activation events
are considered, on the right only the predictions for deacti-
vation events.

proposed approach could also be used to improve the event detec-
tion algorithm, which will likely pave the way toward end-to-end
NILM.

The work presented in this paper is intended to encourage the
combined approach of two interrelated problems; therefore, it is
clear that this work can be extended and improved. One of the
strategies to be applied for future work is to consider a linear com-
bination of the two loss functions instead of the sum to train the
classifiers. The coefficients of the combination could be considered
as weights or penalty factors or not less than trainable parame-
ters. Such approaches, moreover, could be validated using different
datasets in addition to the one proposed, e.g. a dataset that allows
the use of Time-Series cross-validation and enables an approach
much closer to the real case. Finally, a post-processing step could
be helpful to improve the performance of the proposed model by
considering the predictions of one of the two classifiers and check-
ing that they are somehow compatible with the predictions of the
other classifier.
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