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Abstract: Even though Industrial Kitchens (IKs) are among the highest energy intensity spaces,
very little work has been done to forecast their consumption. This work explores the possibility of
increasing the accuracy of the consumption forecast in an IK by forecasting disaggregated appliance
consumption and comparing these results with the forecast of the total consumption of these appli-
ances (Virtual Aggregate—VA). To do so, three different methods are used: the statistical method
(Prophet), classic Machine Learning (ML) method such as random forest (RF), and deep learning (DL)
method, namely long short-term memory (LSTM). This work uses individual appliance electricity
consumption data collected from a Portuguese restaurant over a period of four consecutive weeks.
The obtained results suggest that Prophet and RF are the more viable options. The former achieved
the best performance in aggregated data, whereas the latter showed better forecasting results for
most of the individual loads. Regarding the performance of the VA against the sum of individual
appliance forecasts, all models perform better in the former. However, the very small difference
across the results shows that this is a viable alternative to forecast aggregated consumption when
only individual appliance consumption data are available.

Keywords: industrial kitchen; load forecasting; hour-ahead; appliances; aggregate; prophet; random
forest; LSTM

1. Introduction

The global demand for electricity continues to increase, and strong economic growth,
combined with more extreme weather conditions than in 2020, increased the demand by 6%
in 2021 [1]. Despite efforts made in recent years regarding the development and implemen-
tation of RES, electricity generation from coal- and gas- based electricity generation reached
record levels [1]. As a result, the annual greenhouse gas emissions of the global electricity
sector reached the highest ever recorded value [1]. Contributing to this phenomenon are
energy-intensive businesses with an underestimated consumption [2], such as IKs. Despite
the high energy usage of IKs [2,3], very little research exists related to their consumption
and energy reduction strategies [4].

To mitigate the contribution of IKs to greenhouse gas emissions, and given that fore-
casting energy consumption helps to increase the penetration of RES thanks to better
coordination of generation and electricity consumption, this work explores new method-
ologies of forecasting power consumption in IKs to study if there is room to improve the
performance of said forecast.

In the present work, real-world data are obtained through a monitoring system.
However, some small loads are not equipped with sensors. Because of that, the total
consumption is slightly different from the consumption of the monitored appliances. Hence,
the concept of VA is proposed. VA refers to the power demand of the restaurant, defined as
the sum of loads of each individual appliance monitored in the restaurant. It is different
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from the real aggregate (the measured value for the total load) because it does not include
certain elements that are not directly associated with the IKs, e.g., the lighting of the
dining room.

The main goal of this work is to explore the possibility to improve the electricity
consumption forecast in an unexplored and energy-intensive area. Finding suitable fore-
casting methods for the effective management of energy resources improves the efficiency
of energy consumption and decreases its impact on the environment [5]. To this end, the
proposed forecasting methodology aims to assess whether there is an improvement in the
forecast results using three different methods to forecast both the virtual aggregate and the
individual appliances. The forecasts of the individual appliances are then summed and
compared with the forecast of the virtual aggregate. Finally, the three different algorithms
are compared to see which performed better. All forecasts are made for a one-hour horizon.

The remainder of this paper is organized as follows: The state of the art concerning
energy consumption in IKs and forecasting of electricity demand is presented in Section 2.
Section 3 presents the dataset used and the research methods used. The results obtained
are presented and discussed in Section 4. The paper concludes in Section 5 with a dis-
cussion of the main limitation of the presented methodology and and outline of future
work possibilities.

2. State of the Art
2.1. Electricity Management in Industrial Kitchens

According to Mudie et al. [2], electricity consumption in IKs is much greater than the
literature suggests. Kitchen- and food-related activities outweigh other energy-consuming
activities [3]; furthermore, the carbon footprint of the contract catering sector is 80% higher
than initial estimates [4].

A study developed by Higgins et al. showed that most of the literature on sustainability
in restaurants is limited to ecological aspects, rather than a holistic approach [6]. This limits
the possibility of achieving more sustainable restaurant options. There are, however, some
exceptions to this; in 2017, a holistic evaluation of the carbon and energy impact of different
food preparation options in delivering a restaurant’s menu was carried out [7]. After
considering seven energy reduction scenarios, the study estimated that up to 58% of energy
could potentially be saved.

Regarding the introduction of RES in the operation of IKs, research is very scarce.
Most of the work is related to the use of biomass fuel from industrial kitchen waste or the
implementation of heat recovery systems. Similarly, by searching for the exact desired result:
“implementation of renewable energy in industrial kitchens”, there is no related work in
the first four pages of the search engine. When changing the keyword “industrial” to
“commercial”, a few results are found. On contrary, several works can be found concerning
the integration of RES in houses [8] and buildings [9].

Among the works that were found, one of them considered two buildings composed
of a mix of apartments and one commercial kitchen [10]. These buildings are connected to a
small-scale microgrid that includes renewable energy generation and electric storage. The
microgrids are composed of photovoltaic arrays and wind turbines, as well as an additional
backup, by being connected either to the grid or to a backup diesel generator. Microgrid
sizing and costs are generally sensitive to load shape [10]. The research showed that by
implementing thermal storage there was the potential to increase renewable penetration
by 7% and decrease renewable curtailment (renewable energy resources that cannot be
utilized and are therefore wasted) by 11% [11], indicating that multiple types of storage can
benefit the penetration of renewable energy. Although the goal is to have a building with
100% penetration of renewable energy sources, sometimes this is not the most economically
viable option. The work conducted by Aldaoubab et al., after performing an economic
analysis, demonstrates that lowering the desired penetration from 100% to 80% cuts the
energy cost significantly [10] due to the required sizing of the microgrid. The economic
aspect is a crucial concept in moving towards 100% penetration of renewable energy.
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2.2. Electricity Consumption Forecasting

Electricity consumption forecasting is a crucial aspect of energy planning, manage-
ment, and optimization, with the goal of increasing efficiency and decreasing consumption.
As mentioned above, the amount of work carried out regarding energy consumption in IKs
is not abundant. Still, power demand forecasting is a very explored topic (especially for
household power demand), and many different approaches have been taken to predict a
load demand curve. The three main approaches to building energy consumption and mod-
eling forecasting can be classified as physics-based, data-driven, and hybrid models [12].
The work presented in this paper focuses on data-driven models.

Data-driven models can be divided into statistical or conventional models and ML
models. The latter can be separated into shallow ML and the most recent DL techniques.
Next, a survey of some of the existing literature on this topic is presented.

Two popular methods of building energy consumption model forecasting are autore-
gressive models and statistical regression. They provide a good balance between simplicity
of implementation and precision of forecasting. They have limitations with respect to the
forecasting horizon and modeling nonlinear data patterns [12]. ARIMA and many of its
modifications can be seen being used to forecast energy consumption in buildings. Some
examples of these are from Newsham and Birt [13], Yun et al. [14].

A more recently developed regression model is Prophet [15]. Prophet is a modular
regression model with interpretable parameters. This algorithm has been used to predict
power demand in various works and in different ways. In [16,17], a hybrid prophet–LSTM
model is presented to forecast electric demand. In [18], Prophet has been used for real-
time day-ahead consumption forecasts, while [19] implemented a long-term forecast (one
year or beyond) that performed outstandingly in metrics such as accuracy, generalization,
and robustness.

Several ML techniques have been used to forecast energy consumption in buildings.
A popular technique is SVM. They are efficient for nonlinear problem solving and offer
accurate results even with smaller datasets [12]. In [20], the authors forecast the demand
for cooling and heating energy with exogenous input variables using an SVM. The research
showed that appropriate input data selection could improve forecast accuracy. Similar
conclusions were drawn from the research carried out in [21]. Here, a short-term forecast
was carried out for a university building in Spain, comparing the results of three different
methods: SVM, MLP, and multilinear regression. The SVM model showed higher accuracy
and, again, the accuracy of the model increased with an appropriate selection of variables.

Moreover,DTs is used to forecast energy consumption in buildings. DTs follow the
idea of a tree, from the roots to the leaves. There is an initial root node, where depending on
the conditions established it diverges into other nodes, which can again diverge into more
nodes until it reaches a leaf (a valid classification or forecast value). Many different types
of DT have been developed, each with its own virtues and utility. In [22], a comparison of
stepwise regression models, MLP and DT, is carried out to forecast the electrical load of
residential households. Here, the DTs proved to be the most accurate during the summer
period, although it was outperformed in the winter.

Another technique used to forecast energy consumption in buildings is ensemble
models. Ensemble models can be either homogeneous or heterogeneous. Homogeneous
modeling creates subsamples of the original dataset, which are then processed by one single
data-driven technique [12]. Heterogeneous modeling on the other hand uses a number of
different forecasting algorithms trained on the same dataset, the forecasting results from
each model are then weighted to give the final output.

Similarly to a DTs, but with its own characteristics, is RF. An RF is considered an
ensemble homogeneous model. An advantage over a conventional DT is that it corrects
the tendency to overfit the training set. It does so by generating a group of several DTs
whose results are aggregated into one [23]. They usually implement randomization on two
different levels by having each DT trained with a random subset of observations and then
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having each tree node divided by considering a random subset of variables [12]. RF is used
to forecast energy consumption in buildings in several papers, such as [24] or [25].

DL techniques have seen their popularity increase in recent years, mainly due to their
ability to handle large amounts of data, their improved feature extraction abilities and,
consequently, improved model performances [26]. Runge and Zmeureanu [26] conducted
a review of deep learning techniques used in forecasting energy use in buildings. This
review showed that the most popular techniques used are AEs and RNNs.

LSTM neural networks, a special type of RNN, are among the most popular DL ar-
chitectures and have been used before to forecast energy consumption in buildings, or
even whole districts. For example, in [27], LSTM models were compared with other promi-
nent data-driven models for short-term residential load forecasting, and their experiment
showed the LSTM model obtained the lowest forecasting error. In [28], twelve different
shallow algorithms and DL were used to predict the cooling load of the building. The study
showed that LSTM and extreme gradient boosting were among the most accurate models.
More research using the LSTM forecast is conducted in [29], where a forecast energy con-
sumption for an educational building is presented, showing different LSTM-based models
outperformed SVM, deep belief networks, and ARIMA models.

Concerning the characterization and monitoring of building energy demand, several
methods can be adopted. In [30], the use of a statistical process with the aim of signaling
alarms and detecting faults of unexpected energy demand was proposed. More recently,
in [31], Bayesian linear regression methodology has been proposed for modeling and char-
acterization in tertiary buildings. The main conclusion achieved by the authors in [31]
is that the methodology is intuitive and explainable and provided accurate baseline pre-
dictions. Requirements of forecasting models for smart grids and buildings are reviewed
in [32].

2.3. Summary

To summarize, it is clear from the state of the art that there is an important research
gap to address when it comes to assessing the forecasting of electricity demand in IKs.
Furthermore, it is also possible to conclude that there is not a clear winner when it comes
to selecting the most adequate forecasting algorithms for demand forecasting on domains
other than IKs. The work in this paper is to the best of the authors’ knowledge one of the
first works that benchmark forecasting algorithms using data from an IK being operated in
real-world conditions.

3. Materials and Methods
3.1. Forecasting Algorithms

Considering the results presented in the literature review, it was decided to evaluate
the performance of an algorithm in each of the three categories. More precisely, we used
some of the most common benchmarks in each category: Prophet for statistical models, RF
in shallow ML models, and LSTM in DL models.

3.1.1. Prophet

Prophet is a modular regression model which is designed to have intuitive parameters
that can be adjusted without knowing the details of the underlying model [15]. It uses
a decomposable time series model with three main components: trend, seasonality, and
holidays. Equation (1) shows how these elements are combined. Where g(t) is the trend
function, it models nonperiodic changes in the value of the time series. Here s(t) represents
periodic changes (such as weekly or yearly seasonality), and h(t) represents the effect of
holidays that occur irregularly on the schedule. The error is represented by ε(t).

y(t) = g(t) + s(t) + h(t) + ε(t) (1)
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This forecasting methodology offers various advantages. Most notably, the fact that
seasonality is accommodated by default for multiple periods and the fact that the fitting is
very fast. Hence, allowing near-real-time training and inference.

In this work, the Prophet algorithm was implemented in two different forms. iN One
way, the model is trained with the entire training set in one go and makes a three-day
forecast horizon (the whole test set). This method uses the same amount of training data
as the LSTM and RF methods (all of the data available for February) but has a larger
forecasting horizon. The other way this was implemented was by training with the training
set and by taking advantage of how quickly it can be trained. In this case, the model is
retrained in each window with newly available data and forecasts for the next 12 data points
(one hour). This algorithm was implemented in Python using the Prophet library. Prophet
is available on https://facebook.github.io/prophet/docs/quick_start.html#python-api
(accessed on 5 September 2022).

3.1.2. Random Forest

RFs are usually implemented through randomization on two different levels by having
each DT trained with a random subset of observations and then having each tree node
divided by considering a random subset of variables [12]. For a random vector X repre-
senting the input of real data and a variable Y representing the response of the real value,
the goal is to find a prediction function f (X) to predict Y. The ensembles construct f in
terms of a collection of so-called “base learners”. These base learners are combined to give
the ensemble predictor f (x). For regression, the final output f (x) comes from the average
of all the base learners.

RFs offers various computational and statistical advantages, such as relatively fast
(e.g., when compared with Neural Networks) training procedures. RFs also have built-
in generalization error estimates and are able to impute missing values by default [33].
Another very relevant advantage is that it depends only on a few hyper-parameters, since
according to [33], only three parameters need to be tuned to improve the accuracy of the
model; m, the number of randomly selected predictor variables; J, the number of trees; and
tree size, as measured by the smallest node size for splitting or the maximum number of
terminal nodes.

In this work, this method was implemented following the windowing method described
in Section 3.3.1, using Python as a programming language and the Scikit-learn RandomFore-
stRegressor Random Forest Regression, https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html (accessed on 12 September 2022).

3.1.3. Long Short-Term Memory Deep Neural Network

The LSTM model is an RNN specially designed to overcome the problems of the
exploding/disappearing gradient that typically arise when learning long-term dependen-
cies [34]. A basic LSTM unit is composed of a cell, an input gate, an output gate, and a
forget gate. The latter allows the network to reset its state; this gate was not initially part
of the LSTM but was later introduced [34]. The cell remembers values over arbitrary time
intervals, and the three gates regulate the flow of information associated with the cell.

The main idea behind the memory block is to maintain its state over time and regulate
the information flow through nonlinear gating units. The output of the block is recurrently
connected to the input block and all gates [34], which means that the input to the LSTM
block will be a combination of the current input xt and the previous output of the LSTM
y(t− 1).

The same windowing methodology applied to the RF algorithm is used here. This
technique was implemented in Python using the LSTM library from “keras” LSTM, https:
//keras.io/api/layers/recurrent_layers/lstm/ (accessed on 19 September 2022).

https://facebook.github.io/prophet/docs/quick_start.html#python-api
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://keras.io/api/layers/recurrent_layers/lstm/
https://keras.io/api/layers/recurrent_layers/lstm/
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3.2. Dataset

This paper uses electricity consumption data taken from one restaurant in a region of
southern Europe [35]. The electrical demand for the individual appliances was collected
using the smart meter at the circuit level of the E-Gauge eGauge , https://www.egauge.net/
(accessed on 27 June 2022). A total of 18 appliances were individually monitored for nearly
one month. For each appliance, active power and reactive power (in each line if it is a
three-phase appliance) are measured.

The available data range from the sixth of February of 2019 at 00:00 (6 February 2019
00:00:00) to the fourth of March at 08:47 (4 March 2019 08:47:17). The data were originally
collected at the rate of one sample every five seconds. A summary of the available data
can be seen in Table 1. As can be observed, every appliance has null measurements due to
issues with the data collection platform. Most of these were consecutive and were located
in the first days of the dataset; therefore, every data point before to the 5th of February was
eliminated. The remaining null data points were dealt with using a forward fill function as
described next.

Table 1. Summary of the appliance-level data that constitute the dataset.

Max Power (W) Avg. Power (W) Null Samples

Blast Chiller 5331 215 8056 (1.88%)
Infrared Lights 1133 211 147 (0.03%)
Dish Washer 4456 480 1949 (0.45%)
Glass Washer 1885 43 4 (0.001%)
Convection Oven 1 8797 386 7044 (1.64%)
Convection Oven 2 8337 382 7344 (1.71%)
Salamander 1 3148 944 5995 (1.4%)
Salamander 2 3182 526 6819 (1.59%)
Dual Fryer 5222 219 2619 (0.61%)
Freezer 1319 577 7936 (1.85%)
Ice Machine 421 143 7433 (1.73%)
Mise en Place 854 219 8073 (1.88%)
Garde Manger 1 1278 180 8232 (1.92%)
Garde Manger 2 418 70 8075 (1.88)
Refrigerator—Drinks 623 145 17 (0.004%)
Refrigerator—Fish 3709 96 107 (0.02%)
Refrigerator—Meat 1274 132 54 (0.01%)
Refrigerator—Vegetables 897 99 146 (0.03%)

Data Preprocessing

The initial step is to perform a preprocessing of the data. This includes methods to
handle null values and outliers, data resampling, creation of the virtual aggregate, and data
normalization. Null values appeared in the dataset in two different forms, a large cluster
of them in the first few days and some scattered throughout the data set. To deal with the
first, the data from the days including the cluster of missing values and the previous days
were simply removed from the dataset. To deal with the latter, a forward fill function was
carried out (filling a null value with the previous valid value). The resulting data were
then averaged to 5 min resolution. After this step, VA was created by adding the power
consumption of each appliance at each instant of time t according to Equation (2). A median
filter was also applied to reduce the inevitable noise from the measurement process.

VAx(t) = ∑ Xa(t) (2)

Finally, normalization of the data was carried out for each of the individual appliances
and the VA. This work took a max normalization approach in which all values are rescaled
between 0 and 1 by undergoing the process in Equation (3), where x is the total dataset and
xi is the value of the data point at instant i. This method allows for easy interpretability

https://www.egauge.net/
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of the resulting forecast and its performance metrics. Moreover, it is easy to rescale to the
original values.

xi,normalized =
xi

max(x)
(3)

3.3. Performance Evaluation Methodology

One of the main goals of this work is to understand whether forecasting consumption
of individual appliances and summing these forecasts can improve the forecast compared
with forecasting VA directly. With that goal in mind, the models for each appliance are
individually evaluated, and then a model for VA is created and evaluated. Finally, the
outputs of the individual appliances are added and compared with the performance of the
VA model. To be able to compare and draw conclusions from the forecasts, it is necessary
to obtain performance metrics of these. This section describes the process of training and
testing and the selection of an appropriate performance metric for the problem at hand.

3.3.1. Training and Testing Procedures

Due to the short size of the dataset, it was decided to split the data with 85% for
training and 15% for testing (roughly 3 days). It was also decided that a validation set
would be used in the training of the LSTM model only. This is because LSTM models
have more hyper-parameters to train and can benefit more from the implementation of a
validation set to avoid overfitting. This validation set consists of the last day of the training
set, shortening the training set and not the already thin test set. It was also decided that
only consecutive days would be considered in the training and test sets. To this end, any
days that did not have 288 samples after the preprocessing set were discarded. The fact
that only full days are used to train ensures that the model has had the same amount of
data to learn the consumption patterns at different times of the day, and it is important that
these are consecutive days, since the consumption at the end of one day is always followed
by the beginning of the next day, and there still could be relationships here, even though
this time of the day is of less interest than when the restaurant is operating.

This being said, the next step was to prepare the training and test set, which were
different for the different algorithms. More precisely, for RF and LSTM, it was first necessary
to split the training and test set into consecutive windows of forecasting inputs and outputs
(i.e., the targets). In this work, the size of the input data was set to one day (i.e., 288 samples
of 5 min aggregates), while the output size was set to 1 h (12 samples). This approach is not
necessary for the Prophet algorithm, since it takes as input the entire training set.

3.3.2. Performance Metrics

Two popular performance metrics are RMSE and MAE, shown in Equations (4) and (5).
Where n is the number of samples, y is the target value, and y is the forecasted value.
Despite both metrics being used to assess model performance for many years, there is
no consensus on the most appropriate metric for forecasting problems [36]. While the
MAE gives the same weight to all errors, the RMSE penalizes variance, as it gives errors
with larger absolute values more weight than errors with smaller absolute values. One
major concern to use the RMSE as a performance metric is its sensitivity to outliers. Some
researchers affirm that by giving a higher weighting to unfavorable conditions, RMSE is
usually better at revealing model performance differences, and another advantage is that
RMSE avoids the use of absolute values, which are undesirable in many mathematical
calculations [36]. The underlying assumption when presenting RMSE is that the errors are
unbiased and follow a normal distribution [36].

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (4)
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MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

Since our dataset is bound to be very diverse (individual appliances are going to have
distinct consumption patterns from one another), it is hard to select a performance metric
that will satisfy all needs. With all this taken into account, it was decided to measure
the error in the forecast by using both RMSE and MAE to obtain more knowledge of the
performance of the developed models.

4. Results and Discussion

This section presents and discusses the obtained results. First, the results for VA are
presented, followed by the results of the individual appliances. Then, the performance of
VA is compared with that by summing the forecasts of the individual appliances. Finally, a
discussion on the overall results is also provided.

4.1. Virtual Aggregate Forecast

Figure 1 shows the forecast of all four methods against the test set. Both the Prophet
forecasts for the one-hour time horizon (H = 1 h) and three-day time horizon (H = 3D) show
a much smoother pattern than those of the RF and LSTM forecasts. From this figure, it is
hard to tell which algorithms performed better, and for this reason, Table 2 is included in
the performance metrics of each method.

2019-03-01 01:00:00

2019-03-01 14:17:30

2019-03-02 03:35:00

2019-03-02 16:52:30

2019-03-03 06:10:00

2019-03-03 19:27:30

2019-03-04 08:45:00
0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Po
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r

Y vs Forecast of all 4 algorithms

y
Prophet Yhat (H=1h)
Prophet Yhat (H=3D)
LSTM Yhat
RF Yhat

Figure 1. Comparison of the measured data (Y) and the output of the four algorithms.

One can see here that the Prophet performed better with a shorter horizon and more
data to train. This was somewhat expected, since short-term forecasts tend to be more
accurate than long-term forecasts. Overall, the best performer was RF. However, the
differences in performance are very short, hence it is not possible to say that one is better
than the other.

Table 2. Performance metrics of different algorithms’ comparison for the normalized virtual aggregate.

Prophet (H = 3D) Prophet (H = 1 h) RF LSTM

RMSE 0.10 0.12 0.10 0.11
MAE 0.073 0.068 0.066 0.066

4.2. Individual Appliances Forecast

The NRMSE scores for the individual appliance forecasts are presented in Table 3,
where the green values are the best performers for that appliance, while the red value is
the worst. As it can be observed, individual appliance forecasts yield higher errors when
compared with the virtual aggregate forecast. The exception is the glass washer, which due
to being turned OFF during the test period has a very good performance.
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Table 3. Performance metrics of different algorithms’ comparison for individual appliances (NRMSE).

Prophet
(H = 3D)

Prophet
(H = 1 h) RF LSTM

Blast Chiller 0.20 0.17 0.15 0.17
Infrared Lights 0.31 0.26 0.24 0.25
Dish Washer 0.20 0.19 0.20 0.21
Glass Washer 0.06 0.05 0.0002 0.005
Convection Oven 1 0.14 0.13 0.14 0.14
Convection Oven 2 0.13 0.13 0.15 0.13
Salamander 1 0.34 0.25 0.25 0.22
Salamander 2 0.24 0.21 0.15 0.17
Dual Fryer 0.08 0.08 0.08 0.08
Freezer 0.28 0.12 0.097 0.10
Ice Machine 0.31 0.31 0.29 0.31
Mise en Place 0.34 0.33 0.26 0.28
Garde Manger 1 0.18 0.18 0.16 0.17
Garde Manger 2 0.19 0.19 0.18 0.19
Refrigerator—Drinks 0.32 0.32 0.27 0.29
Refrigerator—Fish 0.21 0.21 0.23 0.22
Refrigerator—Meat 0.21 0.21 0.22 0.22
Refrigerator—Vegetables 0.18 0.18 0.17 0.17

4.3. Virtual Aggregate Forecast vs. Sum of Individual Loads Forecast

Given that the Prophet algorithm for a time horizon of one hour outperformed the
algorithm for a time horizon of three days in almost every case, the following analysis
considers only this model for the Prophet. The results of the forecast of VA and the sum of
the forecast for individual appliances are shown in Table 4. Overall, the error of the forecast
for all the algorithms was smaller when forecasting for the VA rather than summing the
forecast of the individual appliances.

Table 4. Performance metrics of different algorithms’ comparison for the normalized virtual aggregate.

RMSE MAE
Prophet (H = 1 h)-Virtual Aggregate 2290 1499
Prophet (H = 1 h)-Individual Appliances 2287 1507
RF—Virtual Aggregate 2230 1507
RF—Individual Appliances 2520 1998
LSTM—Virtual Aggregate 2461 1564
LSTM—Individual Appliances 2630 1961

Several reasons could be attributed to why the VA forecast performed better than the
sum of the individual appliances forecast. These are now be discussed. Firstly, the amount
of data available for this work was not very large (roughly one month of data available).
This especially affects the LSTM model, which thrives on large datasets. Although this
issue affects both the forecast of the VA and the individual appliance, the load of the IK is
much more stable over time than the load of most appliances. This virtually aggregated
load always follows the same pattern: peak values at lunchtime and dinnertime followed
by a valley until the next lunchtime. However, these patterns are not visible in most
appliances, making it much harder for the forecasting algorithms to learn an accurate
model for each appliance.

This leads to the second issue; the forecast of power consumption in certain appliances
with a binary behavior (e.g., constant consumption when ON). The methods are incapable
of following this kind of trend and forecast a saw pattern instead. This can be seen in
Figure 2, where the target value changes between two values, and the algorithms fail to
follow this trend (especially the RF algorithm). All three methods are able to predict when
the appliance is ON but can not predict the correct value. The impact this has on the sum of
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the prediction of the individual appliances can be seen in Figure 3 and is one of the reasons
why the prediction for VA has a smaller error.
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Figure 2. Results of the salamander forecast with three algorithms against the measured data (Y).
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Figure 3. Virtual aggregate forecast against the sum of individual appliance forecasts.

Moreover, it is worth mentioning the comparison of the Prophet algorithm for VA
with the sum of the forecasts for the individual appliances seen in Figure 4. Both forecasts
follow almost identical curves. While it is not in the scope of this work to go into detail
on the mathematics behind the functioning of the Prophet model, this result indicates
that Prophet works in a way that the sum of the parts is equal to the whole. This could
presumably change if the parameters of the model (such as seasonality) were changed for
each specific appliance.
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Figure 4. Prophet (H = 1 h) VA forecast vs sum forecast of the appliances.

4.4. Discussion

All three algorithms benchmarked in this work have their own merits. Prophets’
performance is peculiar; it is the easiest algorithm to implement, and its performance
is almost identical when forecasting the sum of individual appliances or the VA. This
makes it so that when making the comparison of forecasts of the individual appliances
using the three different methods, Prophet outperforms the other two, measured both in
RMSE (2287 W against 2520 W in RF) and MAE (1507 W against 1998 W in RF). However,
comparing the accuracy of the VA forecast is a more difficult call. It presents the smallest
MAE (1499 W versus 1507 W in RF) but the second-best RMSE (2290 W versus 2230 W
in RF).
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RF shows an overall good performance forecast for the appliances. It has the best
forecasting accuracy for 10 out of 17 of the appliances, more than the other algorithms
combined (in contrast, the Prophet is the worst in 10 out of 17). This makes it the best option
when the objective is to forecast a concrete set of appliances. Moreover, its performance
on the VA was one of the best. In contrast, the LSTM was one of the weakest performing
models. It has the largest RMSE for both the VA and the sum of the individual appliances.
It does, however, score better than RF when measured with MAE for the sum of individual
appliances. This is mainly because it outperforms RF when forecasting for some of the
appliances with binary behavior, as can be seen in Figure 2. The low accuracy of this
model can surely be associated with the low amount of available data, on which LSTM
networks thrive. However, from our experiments, it is clear that LSTMs are a viable option
to explore further.

Regarding the performance of the forecast of VA versus the sum of the forecast
of the individual appliances, from the results obtained, it is not possible to conclude
that the forecast was improved by forecasting for the individual appliances. The three
algorithms performed better forecasting for VA. However, this does not mean that there are
no advantages to the proposed methodology. In fact, the ability to forecast the aggregate by
considering the sum of individual appliances allows the user to add or remove loads from
the aggregated forecast without the need to retrain the entire model. Instead, only the new
appliance needs a newly trained model, while the data of the already existing appliances
remain relevant. When models are trained only for VA, the inclusion of a new appliance will
potentially disrupt the new consumption pattern, hence damaging the prediction ability
of the model. Considering that restaurants are changing businesses, with new appliances
being added or removed with a higher frequency than that of residential kitchens, this
is a very important aspect to consider. This advantage is maintained when removing an
appliance from the restaurant (for maintenance reasons, for example), since in this case,
one can simply remove the forecast for the said appliance from the mix.

Another advantage of this method is that it enables the creation of forecasts for
different consuming sectors of the restaurant. This means that one can agglomerate the
consumption of the freezers or the ovens, for example, and study consumption in this
manner. Finally, this methodology allows for the forecast of each appliance to be fine-tuned.
Each appliance has its own characteristics and distinctive consumption pattern. This means
that each appliance can benefit from being forecasted with a different algorithm and even
using different window sizes to train the models.

5. Conclusions

With the current results, Prophet and RF are the more viable options. Due to its good
results and ease of implementation, Prophet seems the better choice and is certainly a good
one. However, RF is the one with the best forecast accuracy in VA and for some single
appliances. Having the best forecast accuracy for individual appliances can have some
benefits, as explained in the above section. On the other hand, with a larger dataset, it is
likely that the LSTM networks would outperform the other algorithms. Another possibility
this methodology allows is to select a particular model for each appliance based on the
achieved performance. This could even improve the accuracy of the individual appliance
forecast over the forecast of VA. This could be done automatically, if an algorithm was
developed to do so, by selecting the optimal algorithm for each appliance based on the
historical accuracy of the forecast methods proposed in [37].

During the elaboration of this work, certain limitations were met. Predominantly,
the lack of data. The available data were collected in a Portuguese restaurant for roughly
four weeks. This posed some problems at the time of splitting the data into a training
set, validation set, and testing set. A compromise had to be made, and the percentage
of data destined to be tested was smaller than usually recommended in the literature,
but this allowed the models to train with at least two weeks of data. The dataset also
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suffered from some missing data, which had to be handled through data cleaning and
resampling techniques.

Ultimately, future work should attempt to replicate the proposed methodology in
a larger dataset of IK electricity consumption. Based on the results obtained in this
paper, the forecast accuracy should improve for both the virtual aggregates and the
individual appliances.

Likewise, in future iterations of this work, several approaches will be tested to improve
the accuracy of the forecast that this work did not cover. This includes hyper-parameter
tuning and different combinations of window sizes that should be to find out if performance
could be enhanced for each individual appliance. Finally, to solve the issue with the forecast
of the appliance that has binary behavior, it should be possible to combine the forecasting
model with a binary classification model that would automatically post-process the output
of the forecasting model by replacing it with the predicted ON and OFF values.
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