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Abstract: Reducing our carbon footprint is one of the biggest challenges facing humanity in the
current millennium. In the last few years, researchers have focused their attention on balancing the
demand and supply, thereby allowing better management of renewable energy resources. In this
regard, many energy management strategies have been developed. Nevertheless, testing, evaluating,
and comparing such approaches in multiple scenarios, and above all, assessing their generalization,
is currently a hard, or even impossible, task. Furthermore, analyzing the impact of such strategies in
Energy Communitys (ECs) is an underexplored task. This is due to the lack of existing EC datasets
and simulators that allow users to evaluate and compare their approaches. Although there are some
tools to generate demand and production profiles, they are all developed with a single purpose. To
address these challenges, PROCSIM is presented: an open-source simulator designed especially to
create energy community datasets for multiple purposes—in particular, to test and evaluate different
algorithms and models. It includes integration with a consumption-profiles generator, tools to
simulate Solar Photovoltaic (PV) and wind production, a module that generates an EC dataset, and
finally, a set of metrics to evaluate the generated community. To conclude, a case study comprised of
two experiments is presented. The first experiment shows how an EC dataset can be created using
PROCSIM. In the second experiment, an exemplification of how this dataset can be used to evaluate
an optimization algorithm is provided, namely, to optimize the control of a battery. Ultimately, it is
shown that the simulator can generate energy community power demand and generation scenarios.
The scenarios can be fully customized by the user, considering different sizes (power capacity) and
numbers of assets, and diverse generation/consumption characteristics. The datasets generated
by PROCSIM can be useful for different purposes, such as optimal scheduling of EC generation
resources and consumption flexibility, and for designing battery energy storage systems.

Keywords: energy communities; renewable energy; simulators; photovoltaic panels; datasets; load
balancing; load shifting; Python

1. Introduction

Reducing carbon emissions and our overall carbon footprint is one of the biggest
challenges facing humanity in the current millennium [1]. In the last couple of decades, to
take full advantage of Renewable Energy Sources (RES), in particular, when considering
solar and wind generation due to their uncertain nature, many researchers are focusing their
attention on developing mechanisms to balance the demand and supply of energy, such that
in periods where production from RES is lower, it is possible to reduce the consumption,
and vice versa [2]. As a response to this challenge, the concept of Renewable Energy
Community (REC) emerged. RECs are groups of individuals who aim to produce or invest
in the production of clean energy to meet their consumption needs, striving to minimize
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the use of energy from non-renewable sources as much as possible. They have as the
main objective the production and sharing of renewable energy, resulting in environmental,
economic, and social benefits, especially less CO2 emission into the atmosphere.

However, moving from the concept to reality is not as simple as it seems. While
RECs have the potential to be valuable sources of clean energy, they also face several
challenges that need to be addressed. Some of the most pressing issues include: (1) the need
to reduce peak demand, hence avoiding the acquisition of energy from sources outside
the community, which may or not be from RES, and (2) ensuring a fair allocation of the
community resources, to avoid having community members that have higher benefits than
others [3].

Based on this, in the last few years, with the expansion of this field, many researchers
are focusing on developing strategies and mechanisms to solve such problems [4,5]. For
instance, in Chavali et al. [6], the authors developed a distributed algorithm for scheduling
appliances in a Home Energy Management System (HEMS) to monitor and control energy
consumption using a Demand Response (DR) approach to encourage the consumers to
modify their consumption patterns in response to time-varying electricity prices.

To test and evaluate such strategies at scale, large amounts of data are necessary,
hence ensuring that the proposed solutions are evaluated considering a wide range of
different scenarios.

1.1. Current Status of Energy Communities Datasets and Simulators

In the current literature, as highlighted in a recent survey paper [7], there is clear
evidence of a lack of datasets (real or synthetic) on ECs. In fact, only two public datasets
were found in the literature: a real-world dataset from Norway [8] and a synthetic one from
Portugal [9], both of which were released in 2022. These datasets cannot be customized and
are not enough to create different case studies with different characteristics and evaluate
the developed approaches in energy communities.

For instance, in [10], the authors established a mixed-integer linear-programming-
based optimal planning approach for renewable energy communities and evaluated it
using a small-scale REC testbed with nine community participants (six consumers and
three prosumers) in a village in Carinthia, Austria. The electric load profile data of the
nine individual participants were provided by the Distributed System Operator (DSO)
and were generated in a synthetic way based on real smart-meter measurements in time
intervals of fifteen minutes. This proposed optimization model was tested on a small-scale
REC with nine houses, but it was not tested in medium or big ECs due to the lack of of
medium and big EC datasets. In this sense, it is not possible to understand its scalability or
its limitations.

Another study proposing an optimization model for the energy management in energy
communities was presented in Giordano et al. [11]. This model encourages energy sharing
within the community and limits the exchanges of energy with the external grid. The
main goal is to foster energy exchanges among the prosumers of the community. The
effectiveness of the model was evaluated in a specific scenario: the University of Calabria
Campus, in Italy, for a specific day (15 October 2019). Once again, although the authors
reported a 28% increase in Self-Consumption (SC) and a 71% reduction in energy costs,
the truth is that it was evaluated in a single and specific scenario, and it is not possible to
understand its behavior when applied to different scenarios.

These works are two of the many examples that clarify the importance of these
EC datasets.

Interestingly, several research projects aim at developing load demand profiles, some
of which allow the simulation of individual appliance consumption profiles (e.g., [12–14]).
However, these tools are targeted at specific research problems; for example, AMBAL was
originally developed to generate synthetic datasets to train and evaluate Non-Intrusive
Load Monitoring (NILM) algorithms [12]. Therefore, properly integrating such different
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platforms to generate the power demand of ECs will require great software engineering
knowledge and programming skills.

1.2. Main Contributions

Against this background, this paper proposes the PROCSIM open-source simulation
platform. PROCSIM was developed to create realistic energy community datasets that
contain individual appliances’ information.

A key difference to the existing literature is the development of a platform capable of
generating multiple scenarios in energy communities considering PV and wind production
and consumption profiles at the appliance level. To the best of our knowledge, there
are no works that focus on the dataset generation and simulation of renewable energy
communities, and only few datasets are available for use, which cannot be customized by
the user (i.e., it is not possible to configure the community size, the renewable resources,
the householders, or the appliances). Hence, this gap can be filled by developing an energy
communities simulator that allows researchers to configure, customize, and generate
different EC scenarios that can be used in multiple case studies to understand and study the
impact of different strategies in these communities. Differently from other tools proposed
in the literature, where each one has a specific purpose (e.g., generate demand profiles,
generate PV profiles, and generate wind profiles), a unique tool is composed with all
these features.

In summary, this paper makes the following original research contributions:

1. The PROCSIM simulation platform, which allows the generation of realistic EC
datasets at the appliance level completely customized by the user for multiple pur-
poses considering different periods. It allows the creation of ECs with different sizes
by choosing the number of houses, members, and appliances of each house; the
peak power contract; and the schedule of every activity done by the house mem-
bers. Additionally, it supports integration with multiple sources for weather forecasts
(for instance, using Solcast Application Programming Interface (API) to provide so-
lar irradiance data with a minimum granularity of 30 min, using PVLib to provide
solar data from the weather models, or using Tomorrow.io to provide wind data).
Finally, based on the weather forecast, it supports PV and wind generation using
PVLib and windpowerlib libraries. This open-source platform is fully available at https:
//pypi.org/project/procsimulator/ (accessed on 4 February 2023), and its documenta-
tion is also available at https://procsim.readthedocs.io/en/latest/procsimulator.html
(accessed on 4 February 2023).

2. A walkthrough demonstration of the use of the platform. The code and the generated
EC dataset are open-source and available on a public repository https://github.com/
feelab-info/PROCSIM_ECs_Simulation_Scenarios/blob/main/paper_experiments/
Experiment1_EC_Generator.ipynb (accessed on 4 February 2023).

3. Application of an optimization model on top of an EC dataset generated using
PROCSIM to demonstrate the tool’s potential. The optimization model and software
are also open-source (https://github.com/feelab-info/PROCSIM_ECs_Simulation_
Scenarios/blob/main/paper_experiments/Experiment2_EC_Optimization.ipynb, ac-
cessed on 4 February 2023).

The remainder of this paper is organized as follows. In Section 2, an overview of
the related work is provided. In Section 3, the PROCSIM simulator is presented, and its
modules and functionalities are described. In Section 4, two different experiments are
presented, showing how useful the simulator is. More concretely, how the simulator can be
used to generate a custom EC dataset and how the generated dataset can be used to evaluate
an optimization model. Finally, the Section 5 ends the paper and suggests directions for
future research.

https://pypi.org/project/procsimulator/
https://pypi.org/project/procsimulator/
https://procsim.readthedocs.io/en/latest/procsimulator.html
https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/blob/main/paper_experiments/Experiment1_EC_Generator.ipynb
https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/blob/main/paper_experiments/Experiment1_EC_Generator.ipynb
https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/blob/main/paper_experiments/Experiment1_EC_Generator.ipynb
https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/blob/main/paper_experiments/Experiment2_EC_Optimization.ipynb
https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/blob/main/paper_experiments/Experiment2_EC_Optimization.ipynb
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2. Background and Related Works

This section presents and briefly discusses some ongoing initiatives to create EC
datasets and existing tools that can be used to assist in the creation of such datasets—namely,
publicly available household consumption data, household consumption simulators, and
tools for PV and wind generation.

2.1. Energy Communities’ Datasets

As aforementioned, a quick survey of the published literature revealed a lack of
datasets specific to ECs. More precisely, only two datasets were found, a real-world dataset
from Norway [8] and a synthetic dataset from Portugal [9].

The dataset of a Norwegian energy community [8] includes household consumption
data collected from smart meters measurements filtered by season, weekday/weekend,
and time segment. It is divided into five groups: household consumption, appliance
consumption, electric vehicle charging, photovoltaic power generation, and wholesale
electricity price. It aims to allow researchers to implement situations and experiments on
realistic ECs.

The synthetic one is presented in [9], where a dataset featuring a residential community
with 49 households and a public building (a municipal library) is created by assigning
consumption and PV production profiles, and disaggregating the total consumption of
these households into appliances’ consumption.

2.2. Tools for Energy Communities’ Research

Considering the lack of real-world EC datasets, an alternative is to rely on the develop-
ment of synthetic data. In such cases, the data are not obtained from direct measurements.
Instead, the data are obtained from tools that can provide, among others, profiles for
household electricity consumption (e.g., aggregated and per individual appliance) and
renewable energy generation (e.g., from PV) [7]. In this section, we aim to describe pos-
sible alternatives to gather the required data. This includes publicly available electricity
consumption datasets (real-world and synthetic), household consumption simulators, and
tools for simulating energy generation from RES.

2.2.1. Electricity Consumption Datasets

Electricity consumption datasets are collections of electricity measurements from ag-
gregate (i.e., measured at the main breaker box) and/or individual appliance consumption.
They can be mainly of two different types depending on how they are created: real-world
or synthetic.

According to [15], “A real-world electricity consumption dataset refers to a collection of
electrical energy measurements taken from real-world scenarios, without disrupting the ev-
eryday routines in the monitored space”. In the context of EC, these datasets can be further
divided into residential and commercial datasets. The former category refers to datasets col-
lected in residential settings (e.g., UK-DALE [16], REFIT [17], and SustDataED [18,19]). The
latter category refers to datasets from commercial spaces (e.g., BLOND [20], COMBED [21],
and FIKElectricity [22]).

Since collecting real-world datasets requires real measurements, which are time-consuming
and expensive to acquire, generating synthetic data is gaining popularity as a viable
alternative that reduces measurement costs and saves valuable work hours [23]. SynD [23]
is a synthetic energy-consumption dataset originally developed for NILM research in
residential buildings. Another example of a synthetic dataset is the SHED dataset [24],
which consists of synthetic high-frequency electricity consumption measurements from
commercial buildings.

2.2.2. Household Consumption Simulators

A major limitation related to the use of datasets in the context of ECs is the fact that they
are static, hence not allowing the evaluation of different scenarios. In contrast, simulators
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can be customized (e.g., specify the number of consumers and type of appliances) to
generate unique datasets at each run, hence enabling the possibility of exploring many
different scenarios.

In Buneeva et al. [12], the authors proposed AMBAL, a system that generates models
from real devices’ power consumption data collected by smart plugs. To test the quality of
the traces synthesized from AMBAL’s models, they developed ANTgen [25], a synthetic
appliance trace generator that combines device models into aggregate traces and uses them
to evaluate disaggregation algorithms. SMACH [13,26] is a meta-model and multi-agent
simulator of human activity that allows the modeling and simulation of household activities
and their relations with electricity consumption. Finally, the LoadProfileGenerator [14] is
another household consumption simulator. This simulator enables the generation of load
profiles for electricity, gas, hot water, and cold water and returns individual load profiles.

2.2.3. Energy Generation from PV and Wind

In addition to electricity consumption, energy generation from renewable sources,
such as PV and wind, is also important to consider in RECs. In this sense, energy engineers
and researchers are increasingly producing open-source software tools for energy modeling.
A summary of PV modeling tools is present in [27]. PVLib is a library for PV modeling
for multiple purposes written in Python [28] and SolPy (https://solpy.readthedocs.io/en/
latest/, accessed on 8 December 2022). The feedinlib library (https://pypi.org/project/
feedinlib/0.0.8/, accessed on 8 December 2022) is a tool for PV time series modeling that
contains implementations of PV models to calculate the generation of electricity based on
solar radiation measurements. Finally, PECOS is a performance monitoring tool that was
originally designed for PV systems, but it can monitor other systems as well. It includes a
feature for tracking the performance of time series data [29].

Concerning the tools for wind generation, there are also some open-source libraries.
The Wind Power Library (WPL) (https://www.claytex.com/products/dymola/model-
libraries/wind-power-library/, accessed on 14 December 2022) is a Modelica-based simu-
lation library that is used for modeling wind power plant components, such as generators,
power electronics, and auxiliary components. Its purpose is to examine the dynamic
behavior of modern wind turbines that have both generator and grid components. The
windpowerlib is a library designed for modeling the output of wind turbines and farms. It
includes a set of functions and classes for determing the power output of wind turbines.
Finally, wind [30] is a library providing a collection of stochastic approaches to generate
wind speed data on daily and hourly time steps.

2.3. Summary

In summary, as it was possible to observe, there are already many tools that can assist
in creating EC datasets. Nevertheless, there is an evident difficulty in combining all these
tools, highlighting the relevance of the platform being proposed in this work, by combining
several of these tools in a unique package. Additionally, datasets are crucial for advancing
the development of multiple computational fields, including the energy community’s one.
Taking into account the lack of ECs datasets, it is fundamental to foster the development of
tools such as PROCSIM.

3. PROCSIM: Energy Community Simulation Platform

The core purpose of PROCSIM is to allow the creation of EC datasets that are fully
customizable to meet different objectives over several time horizons (e.g., one week, two
months, one year). The PROCSIM simulator was developed in Python due to the availability
of a vast set of libraries for simulating both household consumption and PV and wind
generation. Furthermore, Python is becoming very popular among researchers and is
increasingly used for data science due to its simplicity and flexibility.

PROCSIM has been:

https://solpy.readthedocs.io/en/latest/
https://solpy.readthedocs.io/en/latest/
https://pypi.org/project/feedinlib/0.0.8/
https://pypi.org/project/feedinlib/0.0.8/
https://www.claytex.com/products/dymola/model-libraries/wind-power-library/
https://www.claytex.com/products/dymola/model-libraries/wind-power-library/
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• Released as open-source software (with documentation) to encourage researchers to
contribute with new EC datasets, with the aim of fostering increased collaboration
within the community. These datasets offer benefits for data scientists, researchers,
and decision makers in the energy field, making them a valuable source for model and
algorithm applications. In addition, they can be convenient for real-life simulating
and planning of an EC. They can also be used to evaluate different communities
with diverse sizes and characteristics. Ultimately, it provides a stronger contribution
due to the individual appliance consumption profiles, which are hard to find in the
existing literature.

• Designed with a modular structure, enabling researchers to reuse, replace, or append
individual components as needed (for instance, a researcher can append an electric ve-
hicles module to understand how it affects the community in terms of the management
of the renewable resources).

• Designed to allow the use of just one module or a set of modules instead of the whole
simulator (for instance, generate only one house with a PV panel) for teaching purposes.

• Written in Python, ensuring simplicity (allowing even beginners to use it) and com-
patibility with many existent platforms.

3.1. PROCSIM Implementation

As aforementioned, PROCSIM was developed following a modular approach (i.e.,
it was divided into multiple modules) to allow for easily replacing or appending of new
modules. For instance, the Consumption Generator module can be replaced by another
tool that provides consumption data at the appliance level.

The way that the simulator was implemented is presented in Figure 1, where it is
possible to see the five different modules of the simulator. Additionally, the Unified
Modeling Language (UML) diagram, showing the different classes implemented in the
simulator and the different components that are being simulated, is presented in Figure 2.
PROCSIM currently focuses on the simulation of residential consumption and RES from PV
and wind. However, in the future, the goal is also to simulate the grid (import and export
from the grid), batteries, and electric vehicles. Each module is briefly described next.

Figure 1. PROCSIM modules’ representation diagram.

3.1.1. Community Specificator

The Community Specificator module offers the tools and mechanisms to define an
EC. To this end, several parameters must be specified by the end user. For instance, the
community size (number of households), the appliances present in each house, the number
of householders, and the main activities of each one. In this module, the users also can set
their Peak Power Contract (PPC) (which is the maximum electricity that can be consumed
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by a house at every instant). In the current version, the community configuration is done
using a JavaScript Object Notation (JSON) file with all the aforementioned variables.

Figure 2. UML diagram of PROCSIM.

3.1.2. Consumption Generator

The Consumption Generator module generates the consumption profiles of the commu-
nity using the information from the previous module. Specifically, it creates the baseline
load and the consumption of individual appliances for each household, which are then
aggregated to form the households and community consumption profiles

To accomplish this, the PROCSIM current version relies on the AMBAL appliance trace
generator (ANTgen) [12] to produce appliance consumption traces at a frequency of 1 Hz.

Considering that the ANTGen library has its configuration structure, a converter was
created to translate the community specifications given in the previous module into a data
structure supported by ANTGen. In the future, it can be adapted to support other formats.
In this sense, this module creates a configuration file for each house of the community,
which is also composed of a set of configuration files—one for each user of the house. Then,
each user configuration file contains the user presence schedule and a set of daily activities
for each resident.

After the creation of these configuration files, the ANTgen uses them to generate
the consumption profiles based on the activities and appliance models that are already
available in the tool (TV, refrigerator, washing machine, etc.).

The final output is a set of Comma Separated Values (CSV) files containing power
consumption values and their timestamps with a frequency of 1Hz (1 value per second) for
every house, activity, appliance, and user.

For illustration proposes, Figure 3 shows a house consumption profile generated by
the AMBAL trace generator. In the figure, it is possible to visualize the four ways ANTGen
generates profiles: per appliance, per activity, per user, and aggregated.
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Figure 3. Consumption profile of a house generated by ANTGen for one day.

3.1.3. Weather Data Acquisition

Weather Data Acquisiton is the module responsible for retrieving the weather data from
a specific location (lat and long coordinates), namely, the solar irradiance data and the
wind data.

These weather data are important, since they are used to produce the PV and wind
power forecast. This module was developed to support data from multiple sources. In the
current version, weather data from external APIs (e.g., Solcast or Tomorrow.io), weather
models (from PVLib library), and external files (CSV files) are supported. However, other
sources could be integrated in the future. The external API allows access to weather data
from different APIs, hence providing historical data and forecast data (which allows the
development of real-time simulations).

Regarding the weather models, there are five in the current version: Global Forecast Sys-
tem (GFS) (see https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#gfs, accessed
on 18 December 2022, High Resolution Rapid Refresh (HRRR) (see https://pvlib-python.
readthedocs.io/en/v0.4.0/forecasts.html#hrrr, accessed on 18 December 2022), Rapid Re-
fresh (RAP) (see https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#rap, ac-
cessed on 18 December 2022), North American Mesoscale (NAM) (see https://pvlib-python.
readthedocs.io/en/v0.4.0/forecasts.html#nam, accessed on 19 December 2022), and Na-
tional Digital Forecast Database (NFDF) (see https://pvlib-python.readthedocs.io/en/v0.4
.0/forecasts.html#ndfd, accessed on 19 December 2022); and all of them are supported by
PVLib (see https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#weather-models,
accessed on 19 December 2022). The main challenge in using these weather models to re-
trieve solar irradiance data are that they are not frequently updated. For example, the GFS
model is only updated every six hours.

Finally, external files with weather data can be used in the simulator, supporting
different time resolutions. To be supported by the platform, in the case of PV, the files
have to contain at least three specific weather columns: Global Horizontal Irradiance (GHI),
Direct Normal Irradiance (DNI), and Direct Horizontal Irradiance (DHI). For the wind case,
the mandatory columns are the wind speed, temperature, and pressure.

https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#gfs
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#hrrr
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#hrrr
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#rap
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#nam
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#nam
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#ndfd
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#ndfd
https://pvlib-python.readthedocs.io/en/v0.4.0/forecasts.html#weather-models
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3.1.4. Renewable Energy Generation

This module is responsible for providing the tools necessary to generate the pro-
files from RES using the sources of the previous module. In the current version, PV is
supported through the PVLib-Python library (https://github.com/pvlib/pvlib-python,
accessed on 18 December 2022) with Solcast (https://solcast.com/, accessed on 18 De-
cember 2022) weather data or through weather models, and the wind production is
supported using windpowerlib library (https://windpowerlib.readthedocs.io/en/stable/,
accessed on 21 December 2022) with weather data acquired from Tomorrow.io (https:
//www.tomorrow.io/weather-api/, accessed on 21 December 2022).

This enables the generation of production profiles with the same sampling rate as the
sources (e.g., Solcast supports historical and real-time data down to 5 min resolution and
up to 60 min). These tools provide functions to simulate the production from photovoltaic
energy systems and wind turbines.

3.1.5. Community Generation

The last module of the Community Simulation is the Community Generator. It receives
as input all the generated consumption profiles (from the Consumption Generator module)
and the production profiles (from the Renewable Energy Generator). It then returns an
EC with the consumption, production, and the net-load, calculated based on the other
two variables. The netload is the total community demand minus the production, as
represented Equation (1):

netload = Ntt = Dt − Pt , time t (1)

where Dt is the demand in time t, and Pt is the total production in time t. The net-load can
take a negative value, a positive value, or a value of zero, as shown in Equation (2):

Ntt =


= 0 , Dt = Pt (distributed generation and demand perfectly balanced)
< 0 , Dt < Pt (more distributed generation than consumption)
> 0 , Dt > Pt (more consumption than distributed generation)

, time t (2)

One critical feature of this module is the possibility of calculating metrics using the
EC data, which ultimately can be used to assess the behavior of the community and
the performance of a particular optimization model. The current version supports nine
metrics, including the quantity of energy used from the grid, quantity of energy used
from the RES, quantity of energy wasted from the RES, number of peaks, average power
used from the grid, average power used from the RES, and average power wasted by the
RES, Self-Sufficiency (SS), and SC. Other metrics can be easily added by extending the
respective interface.

3.2. Dataset Structure

The generated EC datasets are organized as represented in Figure 4. The data are
stored in the output folder. It contains a folder for each community house with its con-
sumption profiles: aggregate, per appliance, per user, and activity. Furthermore, it contains
the following profiles: community (i.e., the total consumption of the community), com-
munity_baseload (total base load of the community), community_not_baseload (total
consumption of the community minus the total base load), renewable energy (community
production), and finally the net-load (demand minus the production, which corresponds to
the demand that must be met by the grid).

https://github.com/pvlib/pvlib-python
https://solcast.com/
https://windpowerlib.readthedocs.io/en/stable/
https://www.tomorrow.io/weather-api/
https://www.tomorrow.io/weather-api/
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Figure 4. EC dataset structure.

4. Case Study

To demonstrate the main features of PROCSIM and show how to use the generated
datasets, this section presents two experiments. In the first experiment, PROCIM was used
to generate an EC dataset. In the second experiment, the generated dataset was used to
evaluate an EC optimization model.

4.1. Experiment One: Dataset Generation

In this experiment, a week-long dataset was generated for an EC constituted of
five houses, one small solar farm (15 kWp), and one small wind park (6 kWp). The
characteristics of the five houses are presented in Table 1, with the following appliances:
F—fridge, TV—television, WM—washing machine, VC—vacuum cleaner, PC—personal
computer, CM—coffee maker, K—Kettle, BC—bread cutter, CS—cooking stove, DW—
dishwasher, DM—dryer machine, WH—water heater, M—microwave, T—toaster, CP—CD
player and A—amplifier.

Table 1. Characteristics of the generated EC.

House People Appliances PPC

H1 Sarah F, TV, WM, VC, PC, CM, K, BC, CS, M, T, CP, A 3.45 kVA
H2 Ann F, TV, WM, VC, PC, CM, K, BC, CS, M, T 3.45 kVA
H3 Mark, Bill F, TV, WM, VC, PC, CM, K, BC, CS, M, T, CP, A 5.75 kVA

H4 Elon, Tom, John, Toby F, TV, WM, DM, VC, WH, PC, CM, K, BC, CS, M,
T, CP, A 10.35 kVA

H5 Ruth, Jeff, Steve F, TV, WM, DM, VC, WH, DW, PC, CM, K, BC,
CS, M, T, CP, A 6.9 kVA

The four steps of the dataset generation process took around 7 min. These steps are
summarized next.

4.1.1. Step 1: Generation of the Consumption Profiles

In the first step, after having the JSON file with all the community configurations, the
Consumption Generator module is used. This class has multiple functions that can be used
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separately. However, in order to simplify, each class has its own execute function, which
allows executing the whole behavior by aggregating multiple functions (i.e., convert to the
format supported by ANTGen, generate all the consumption profiles of the community
houses, resample to the desired frequency (in this case 1/60 Hz), and calculate the total
community load profile by summing all the individual ones).

When instantiating the ConsumptionGenerator class, three arguments are required:
the location of the JSON configuration file, the location where the consumption profiles
generated by ANTGen will be created, and the location of the profiles after the resampling.
Then, when calling the execute function of this class, the two following arguments must be
provided: the number of days to simulate and the folder of the configuration files in the
ANTGen format. In our case, consumption profiles for a week were generated (the first day
is shown in Figure 5).

Figure 5. First day of the community consumption profile.

4.1.2. Step 2: Generation of PV and Wind Production

After generating the demand, this second step uses the Renewable Energy Generator
module to generate PV and wind production (as shown in Figure 6). In order to generate
realistic profiles, weather data were acquired from two different sources: from Solcast API
when considering PV production with a resolution of 30 min, and Tomorrow.io API when
considering wind production with a resolution of 1 h.

Figure 6. First day of the community production profile, considering PV and wind production.
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When using the RenewableEnergyGenerator class, four arguments must be provided:
the CommunityGenerator instance in order to use some of its functions, the PV and wind
subclasses, and the location of the consumption profiles generated in the previous module.
Then, the execute function is called without any argument to calculate the PV and wind
production based on the weather data acquired. The total production is then calculated by
summing the individual components.

4.1.3. Step 3: Calculation of Net-Load and Generation of the EC Dataset

In this third step, the Community Generator module is used to calculate the community
net-load (see Figure 7). When instantiating this class, it is only necessary to specify the path
of the EC dataset (where it will be stored).

After this calculation, the EC dataset was fully generated, with the structure presented
in Figure 4. As aforementioned, since the dataset does not only contain consumption at the
house level but also consumption at the appliance level, activity level, and user level, it
can be used to evaluate algorithms for specific appliances and specific activities instead of
evaluations of the whole house or the whole community.

Figure 7. First day of the community netload profile.

4.1.4. Step 4: Calculate Metrics in the EC Dataset

Finally, to conclude the first experiment, after generating the EC dataset, some metrics
were calculated based on the consumption and production profiles. In order to do that, the
class receives the community data where the metrics will be calculated and calculates all
the metrics chosen by the user.

Table 2 shows the values obtained for the different metrics calculated for this dataset.

Table 2. Values obtained for the different metrics calculated in this EC dataset.

Metric Value

Average Power Used from Grid 1.72 kW
Average Power Used from PV 1.48 kW
Average Power Not Used from PV 4.09 kW
Energy Used from Grid 41.29 kWh
Energy Used from PV 35.47 kWh
Energy Not Used from PV 98.28 kWh
Number of Peaks 5046
Self-Sufficiency (SS) 46.21%
Self-Consumption (SC) 26.52%
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4.2. Experiment Two: Community Battery Energy Storage Optimization

Energy management systems are generally developed based on optimization algo-
rithms. The objective function used on such algorithms is normally the minimization
of the costs or the maximization of the SC and SS [31]. The second experiment of this
paper demonstrates how the previously generated EC dataset can be used to evaluate a
Mixed Integer Linear Programming (MILP) problem [32] to optimize the energy costs of
the community considering the use of a Battery Energy Storage System (BESS).

In this scenario, the Energy Community comprises two renewable generators (PVs
and wind) with a peak production capacity of 21 kWp: five loads (one for each house)
with a peak demand of 29.9 kW (i.e., the sum of all five PPC values) and one BESS with
a capacity of 10 kWh and a 3 kW inverter. It is also possible to import and export energy
from/to the main grid. The import price was defined by a time of use (ToU) tariff with four
different prices during the day, whereas the export price was set to a flat rate.

The initial State of Charge (SOC) of the BESS was set to 20%; the lower and upper
limits of the SOC were set to 20% and h, respectively. The simulation had a total duration
of seven days and a time resolution of one hour.

4.2.1. Constraints

The MILP includes the operating constraints of each resource. The constraints for each
period t are the following:

• The power exchange between the EC and the main grid (pImpt and pExpt) is limited
by the thermal limits of the cables or by contracts.

• The power of generators (gActg,t) is limited by their nominal power and by the
generation forecast of PV and wind.

• For the loads (loadl,t), we assume continuous flexibility of 10% (lRedl,t) of their power
consumption at each instant and 5% flexibility with discrete activation (lCutl,t). A re-
laxation variable (lENSl,t) is also considered in the problem. This variable is important
when the generation resources are insufficient to supply all the demand.

• The batteries are limited by the maximum values of power charge (sChs,t) and dis-
charge (sDchs,t) and by their maximum capacity. Afterward, a constraint to model the
BESS balance is required to update the SOC of the BESS in each instant t.

• Finally, the balance between power consumed and injected in the EC is required. This
equation is represented in Equation (3).

0 =
G

∑
g

gActg,t

+ pImpt − pExpt

−
L

∑
l

loadl,t − lRedl,t − lCutl,t − lENSl,t

−
S

∑
s

sChs,t − sDchs,t, ∀t ∈ T

(3)

4.2.2. Objective Function

In terms of the objective function (OF), there is a cost (represented as φ) associated
with all the different components: generators, loads, storage, and grid. The OF corresponds
to the goal of minimizing the sum of all these costs, as represented in Equation (4).

gens =
G

∑
g

T

∑
t

gActg,tφ
gen
g,t

loads =
L

∑
l

T

∑
t

lRedl,tφ
red
l,t + lCutl,tφ

cut
l,t + lENSl,tφ

ENS
l,t
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stor =
S

∑
s

T

∑
t

sDchs,tφ
dch
s,t − sChs,tφ

ch
s,t

rest =
T

∑
t

pImptφ
buy
t − pExptφ

sell
t

obj = gens + loads + stor + rest (4)

4.2.3. Results

Using Pyomo [33], a Python package for solving different optimization techniques,
and IBM ILOG Constraint Programming Language EXecutor (CPLEX) Optimization Studio
solver, the model was executed for the one week of data. The optimization took 67.87 s.
The results obtained for the different days are displayed in Tables 3–5, grouped by day.

Table 3. Houses and battery consumption for every day of the week after applying the model.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

House 1 (kWh) 6.98 6.96 6.31 4.65 6.36 6.29 6.32
House 2 (kWh) 6.76 4.49 5.79 6.51 6.26 6.84 6.67
House 3 (kWh) 10.06 11.85 12.21 11.97 11.82 11.58 11.71
House 4 (kWh) 19.82 20.00 20.65 17.97 16.67 20.47 22.26
House 5 (kWh) 12.39 12.50 12.53 13.20 11.82 12.38 8.77
Battery Charging (kWh) 13.85 5.69 8.42 9.30 8.94 4.99 8.42

Table 4. Production sources used for every day of the week after applying the model.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

PV (kWh) 14.71 11.20 26.60 17.52 21.16 5.89 2.33
Wind (kWh) 38.31 29.76 8.13 14.21 16.31 39.63 112.39
Battery Discharging (kWh) −4.93 −4.77 −9.19 −9.43 −8.5 −5.28 −2.19
Grid (kWh) 11.90 14.33 16.50 14.63 14.00 11.76 4.45

Table 5. Battery charging, battery discharging, and state of charge for every day of the week after
applying the model.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Battery charging (kWh) 13.85 5.69 8.42 9.30 8.94 4.99 8.42
Battery discharging (kWh) −4.93 −4.77 −9.19 −9.43 −8.5 −5.28 −2.19
Average State of Charge (%) 58.82 88.70 60.36 57.88 53.64 37.18 50.89

The consumption values of each house and the battery charging are illustrated in
Table 3. The production of the two renewable sources, the battery discharging, and grid
imports are represented in Table 4. Additionally, in Table 5, it is possible to observe the
energy charged and discharged from the battery on the different days of the week, along
with the average state of charge in percent.

Figures 8–10 graphically show the aforementioned results only for the first day of
the week. When comparing the first two graphs, it is easy to visualize that the load is
balanced at every instant of the day. Moreover, when visualizing the third one, it is easily
visible that the charge and discharge maximum power constraints (i.e., 3 kW) are being
fulfilled. Furthermore, it is possible to see that the minimum and maximum SOC limits
are respected.
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Figure 8. Total demand of the community on the first day after applying the model.

Figure 9. Total production of the community on the first day after applying the model.
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Figure 10. Battery charges and discharges on the first day after applying the model.

5. Conclusions

In this paper, PROCSIM, an open-source Python energy community simulator that
enables researchers to develop and customize multiple scenarios for creating ECs datasets
for various purposes is proposed. It allows researchers to evaluate different load balancing
strategies, which is very relevant in a context where EC datasets are very scarce. The imple-
mentation employs a modular approach, hence enabling researchers to re-use, replace, or
add new modules. The simulator also comprises integration with a household consumption
generation tool, a weather forecasting tool, and a photovoltaic energy system. Lastly, it
has a module for implementing various control strategies and provides implementations
of multiple energy-related metrics that can be used to quickly assess the impact of the
developed approaches on the communities.

We also demonstrated how to use PROCSIM through a case study with two experi-
ments. The first one showed how a dataset can be created, whereas the second one showed
how to use the generated dataset to implement and evaluate an optimization model that
uses a battery to minimize consumption costs.

Ultimately, it has been shown that PROCSIM is capable of generating energy commu-
nity power demand and generation scenarios considering different types and characteristics
of ECs, which can be adapted and personalized according to the user’s objectives. The
datasets generated by PROCSIM are useful for a range of purposes. While the presented
case study only considers the optimal control of a community BESS, the generated datasets
can be used in a myriad of scenarios. For example, to evaluate NILM algorithms or new
methodologies for understanding consumption patterns in households .

However, despite the promising results, there are some limitations and some future
work that will continue to be developed. This includes the need to develop a Graphical
User Interface (GUI) and an automatic way to generate realistic houses with the minimum
user effort. In the current version, this process is manual and requires a long time to
define the house’s behavior and configure the communities. Future work will also focus on
implementing Electric Vehicles (EVs) and charging stations in the simulator with driving
patterns and charging behaviors that are coupled with the household routines. Other future
improvements will be related to the implementation of tools to simulate and analyze the
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power system’s quality which is an important feature to take into consideration. Further-
more, it should be possible to easily integrate an open-source tool such as pandapower to
co-simulate the power grid. Future iterations of this work should also consider the addition
of new domestic appliances (e.g., HVAC) which are not available in ANTGen. Likewise, it
would also be interesting to add modules that increase the utility of the simulator in the
research community (for instance, adding new external sources to acquire market prices).

Finally, in future work, PROCSIM could also be used to test other load balancing
schemes for ECs. In this regard, it is, particularly interesting to study pro-social energy
management schemes in which agents working on behalf of EC members are willing to
undertake costly actions for the good of the community.
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Nomenclature

φ
gen
g,t Cost of using energy from generators

φcut
l,t Active power curtailment (on/off control) in load l in instant t [kW]

φENS
l,t Active power not supplied (relaxation variable) in load l in instant t [kW]

φred
l,t Active power reduction (continuous control) in load l in instant t [kW]

φch
s,t Cost of charging the storage

φdch
s,t Cost of discharging the storage

φ
buy
t Cost of buying energy from the grid

φsell
t Cost of selling energy to the grid

pExpt Active Power exported to the grid at instant t [kW]
pImpt Active Power imported from the grid at instant t [kW]
gActg,t Active Power of generated g at instant t [kW]
lCutl,t Flexibility with discrete activation of load l at instant t [%]
lENSl,t Relaxation variable of load l at instant t
loadl,t Active Power of load l at instant t [kW]
lRedl,t Flexibility of active power consumption of load l at instant t [%]
sChs,t Active Power charge of storage s at instant t [kW]
sDchs,t Active Power discharge of storage s at instant t [kW]

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
BESS Battery Energy Storage System
CPLEX Constraint Programming Language EXecutor
CSV Comma Separated Values
DHI Direct Horizontal Irradiance
DNI Direct Normal Irradiance
DR Demand Response
EC Energy Community
EV Electric Vehicle

https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/tree/main/PROCSIM_EC_Datasets
https://github.com/feelab-info/PROCSIM_ECs_Simulation_Scenarios/tree/main/PROCSIM_EC_Datasets
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GFS Global Forecast System
GHI Global Horizontal Irradiance
GUI Graphical User Interface
HEMS Home Energy Management System
HRRR High Resolution Rapid Refresh
JSON JavaScript Object Notation
MILP Mixed Integer Linear Programming
NAM North American Mesoscale
NFDF National Digital Forecast Database
NILM Non-Intrusive Load Monitoring
OF Objective Function
PPC Peak Power Contract
PV Solar Photovoltaic
RAP Rapid Refresh
REC Renewable Energy Community
RES Renewable Energy Sources
SC Self-Consumption
SOC State of Charge
SS Self-Sufficiency
UML Unified Modeling Language
WPL Wind Power Library
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