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Abstract. This paper proposes a methodology for visualizing satellite-based 
machine learning (ML) datasets to understand the visual components that will be 
used as inputs for developing ML models. The proposed methodology uses t-
Distributed Stochastic Neighbor Embedding (T-SNE) methods to create visuali-
zations of satellite images leveraging models that were pre-trained in ImageNet. 
T-SNE is a self-supervised learning tool used to transform high-dimensional 
spaces into two- or three-dimension embeddings, making it easier to visualize a 
broad dataset in a single image or space. The methodology is demonstrated using 
the LUCAS Topsoil Analysis dataset with satellite images from Sentinel-2. The 
dataset was constructed using the TerraSense Toolkit (TSTK). The T-SNE visu-
alization tool aims to improve ML research by providing a clearer visual under-
standing of satellite-based datasets. 

Keywords: Satellite imagery · t-SNE (t-Distributed Stochastic Neighbor Em-
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1 Introduction 

Soil surveying is a process that reveals crucial information about the soil composi-
tion, such as nutrients, that could have a great impact on a more efficient and effective 
use of land. Traditionally this has been a time-consuming and expensive process that 
requires sampling on the field and intensive testing. Despite the progress made in the 
agricultural applications of ML using satellite images (e.g.,[1, 2]), datasets are still a 
challenging matter as there are still few ground-truth available and because of specific 
limitations of satellite photography. According to Lillesand et al. “When we look at 
aerial and space images, we see various objects of different sizes, shapes, and colors. 
(...) The images contain raw pixel data. These data, when processed by a human inter-
preter’s brain, become usable information [3].” Following this reasoning, it becomes 



 

clear that visually analyzing the dataset and trusting human capacity for interpretation 
is one of the paths toward a better dataset that could ultimately improve the performance 
of ML algorithms. 

Against this background, this paper proposes a methodology to visualize satellite-
based ML datasets to understand better the challenges associated with the visual com-
ponents that utterly affect the performance of ML algorithms. More precisely, the pro-
posed methodology uses t-Distributed Stochastic Neighbor Embedding (T-SNE)  [4, 5] 
methods to create visualizations of the satellite images leveraging models that were pre-
trained on ImageNet [6]. 

T-SNE methods have been used in many disciplines, for instance, data science, med-
icine, social sciences, media art. This self-supervised learning tool transforms high-
dimensional spaces into two- or three-dimension embeddings, making it easier to visu-
alize a broad dataset in a single image or space. The proposed methodology is demon-
strated using the LUCAS Copernicus dataset with satellite images from Sentinel-2 [7–
9]. We also analyze the dataset for two specific crops, maize, and common wheat, as 
these are among the most represented crops in the used dataset. 

Although t-SNE has commonly been used to visualize the distance between satellite 
images according to their classification vectors, e.g., there are few examples of t-SNE 
used to plot satellite images themselves for the sake of visually embedding datasets 
altogether. One prominent example would be the process of creating the interactive 
platform Land Lines by Zach Lieberman and Google Data Arts Team for which they 
plotted several satellite images together in a grid before developing their interactive 
experience [10]. This later type of t-SNE is more commonly used in digital arts. Its 
application could have a significant impact on machine-learning dataset visualization, 
for example, for dataset cleaning purposes. 

The remaining of this paper is organized as follows. Section 2 presents the datasets, 
tools, and methodology used to visualize the datasets. Section 3 presents and discusses 
the result of a simple case study that was developed to demonstrate the proposed 
method. The paper concludes in Section 4 with a summary of the results and future 
work directions. 

2 Materials and Methods 

This section first describes the datasets and tools used in this research. Then, the pro-
posed methodology is described in detail. 

2.1 Dataset and Tools  

The dataset was constructed using information given in the LUCAS Survey, an effort 
of the European Soil Data Centre (ESDAC) for which there have been collected thou-
sands of samples of soil in the European Union described some of its properties. The 
ground-truth taken were the ones intersecting three different surveys, as observed in 
Fig. 1: the LUCAS Topsoil Analysis, which contains information about soil composi-
tion, the LUCAS Copernicus which includes information on land use; and LUCAS 



 

2018 that contains GPS coordinates. The LUCAS Copernicus survey is not a complete 
dataset per se, as it does not contain aerial images of the fields. The images were ob-
tained from Sentinel-2 satellite, a multispectral satellite orbiting Earth since 2016. 

 

 
Fig. 1: Dataset construction workflow. 

The dataset construction workflow was introduced by author Manuel Pereira on the 
TerraSense Toolkit (TSTK) [11]. For each specific sample of the Lucas Survey, several 
images were taken in a range of five days prior to and five days after the date on which 
the ground truth was taken and as long as the maximum cloud coverage was less than 
80%. This is because the satellite captures every point on earth only twice or three times 
a week due to its orbit around Earth. In many cases, clouds might block the view of the 
direct soil rendering the images unusable. 

The Sentinel-2 uses a multispectral camera with 12 bands ranging from the visual 
spectrum to short-wave infrared. The spatial resolution for the visual spectrum is 10m, 
while it varies from 10 to 60 m on other bands. The LUCAS Survey also contains a 
polygon of up to 51 meters defining an area around the ground truth where soil use does 
not change. The TSTK downloader downloads the polygon and an extra margin in all 
directions. The resolution of images may vary depending on the size of the polygon. 
Then images of the visible spectrum were created using red, green, and blue bands.  The 
median resolution for the RGB images is 162 x 217px. For the first tSNE presented in 
this paper, all of the images were exported with a white background and then cropped 
to 100 x 100px resolution. For later tSNEs, images were exported with no background 
and cropped to 100 x 100px, as seen in Fig. 2. Images with smaller resolution were 
upscaled to match this resolution. 



 

     
Fig. 2: RGB image with no background and image cropped to 100 x 100 px. 

2.2 Feature Extraction and t-SNE 

An overview of the proposed methodology is given in Fig. 3. To analyze the high 
amount of data, t-Distributed Stochastic Neighbor Embedding (tSNE) images were cre-
ated. tSNE is a commonly used clustering method for visualizing high-dimensional 
spaces on a plane or tridimensional space. The VGG16 keras classification model [12], 
a convolutional neural network (CNN) pre-trained on ImageNet, was utilized for high-
level feature extraction (see Fig. 4). Although the ImageNet dataset consists of images 
and labels of specific objects, animals, and people, the current dataset contains a differ-
ent type of image often with no clear subject and smaller resolution. Whatsoever, the 
last layer, used for classification on the 1000 categories of ImageNet is ignored, and 
only the weights for the 4096 connections on the last fully connected layer, whose 
weights correspond to high-level features. Then a Principal Component Analysis (PCA) 
extraction takes place, restricting the number of features to only the most relevant. 

 
Fig. 3: Workflow diagram of the proposed methodology. 

All the images are then plotted with t-SNE to a two-dimensional plane, where neigh-
boring relationships indicate the similarity of features. This is done through an iterative 
random process that ultimately optimizes the probability of distribution through a sto-
chastic process. In the last step, the images are replotted into a grid using RasterFairy, 
a tool created by Mario Klingemann [13]. This tool rasters the images into a regular 
structure while trying to preserve the neighboring relationship.  



 

 
Fig. 4: VGG16 architecture. 

3 Results and Discussion 

This section presents and discusses the obtained results. The first result is the gener-
ated tSNE for the entire dataset, it is shown on Fig. 5. This image is by its visual prop-
erties a result on itself. It is a tool to better visualize our own data, like a map that 
reveals the potential knowledge for the machine. The image is then described in visual 
terms on detail to point out the generated clusters and what it can say about our data.  

In a third part, two specific crops, common wheat, and maize, are explored in more 
detail.  

3.1 Entire Dataset t-SNE 

 
The whole dataset consists of over 50.000 captures of soil for over 15.809 different 

points or soil ground truth. Meaning there might be more than one image for any point. 
The images were created using only the red, green, and blue channels of the patches. 
Then they were automatically cropped to 100 x 100px due to the capture size.   

The t-SNE shown in Fig.  was made with a random sample of 10.000 images taken 
from the general set of images. Primary Component Analysis (PCA) was restricted to 
300 features.  

 



 

 
Fig. 5: t-SNE representation for the entire dataset. 



 

 
Some obvious conclusions can be drawn from looking at the t-SNE. The first is the 

persistence of clouds on the dataset; Even though clouds were already maxed out, they 
still took about 20% of the dataset. In the blue-shaded section of the t-SNE at the bot-
tom, it could be observed that heavy moisture due to atmospheric conditions blurs the 
view of the soil. These images add much random noise to the dataset as no specific 
features can be extracted from them.  

On the lower right side, there are a set of images that have white lines on their mar-
gins. These images had a smaller resolution than 100px wide because the polygon pro-
vided by the LUCAS Copernicus was smaller than average. Thus, when applied the 
center crop, an extra white margin was left. In future experiments, images with less 
than 100px wide were upscaled.  

It is also observed some little clusters of black images or partially black images on 
the bottom of the tSNE, towards the center and center-right. The absence of visual in-
formation is due to the satellite camera not covering the whole of the requested area 
during its orbit.  

There are also some reddish images clustered on the top left. Whatsoever, some other 
reddish images were grouped alongside clouds on the lower center-right. Further anal-
ysis indicates that some of these images are also brighter than some of the clouds. It is 
possible that VGG16 assigned similar features to dim clouds and bright reddish soil, 
which ended up grouping them after the stochastic clustering. 

The rest of the dataset seems to be clear and distinguishable. A wide variety of greens 
and browns is observed. But also, there is a high presence of distinct forms due to cul-
tivation area; the presence of roads, houses, and other structures; and topographical 
features. 

3.2 Common Wheat and Maize Case Study 

The TSTK was used to train individual models for each crop present on the LUCAS 
Survey, being that each crop has different visual properties related to soil nutrients. 
From the previous analysis, it was established that the model trained on Common 
Wheat was the most accurate one to predict soil nutrients, while the one trained on 
Maize was the least accurate [11]. The most significant difference for each crop is the 
size of the dataset. As seen in Fig.  the number of samples for common wheat is 2.5 
times larger than that for maize (4.133 and 1.796, respectively [7]).  



 

  
Fig. 6: t-SNE representation for individual crops: common wheat (left), maize (right). 

Furthermore, the t-SNE differentiates two different types of images for each crop, 
possibly for when the plant is fully grown, and for when it is harvested or recently 
planted as observed on the detail shown in Fig. . This distinction is much clearer on 
wheat than maize. It could be hypothesized for a study that a machine trained on these 
images might be able to understand these differences very easily and make separate 
calculus for when there is leaf presence and when there are no leaves. 

 

 
Fig. 7: Details of different clusters generated for each crop showing the different stages of plant 
growth. 



 

4 Conclusions and Future Works 

To understand what is happening inside a satellite images dataset, it is essential to 
look at the visual information and thus to find ways to organize it to make it easier to 
comprehend by the human eye. Visual t-SNE help to cluster information altogether to 
better explore relationships within images but also to understand the possible chal-
lenges driven out of the dataset creation and further growth. It shows how task related 
to computer vision grow in the interdisciplinary efforts across the computational sci-
ences, the multimedia practices and the agronomical field. 

Satellite images, such as those provided by Sentinel-2, are a cost-efficient way to 
obtain visual information from the soil. Nonetheless, information regarding soil com-
position is still limited, and more robust datasets are needed to make a big picture of 
soil nutrients all across the European Union and the whole of the world. 

4.1 Future Work 

The current dataset is still subject to different types of visual analysis. On one hand 
it is needed to study the visual spectrum for each of the crops that are not cited on this 
article to understand the how much visual information is actually present on the dataset.  

On the other hand, it is needed to be understood which of the bands of the Sentinel-
2 satellite are the most helpful for the study of each crop. As suggested by Wand and 
Wei [14, 15], certain bands might be more valuable than others in estimating the pres-
ence of chlorophyll in leaves which can be an indication of specific nutrients on the 
soil, specifically nitrogen for the study. The bands depend on the specific crop but some 
common bands might also be determinant. Lu et al. experiments propose that for the 
estimation of potassium from plant canopy, certain near-infrared and shortwave infra-
red are more adequate for such task [16]. It would be interesting to see t-SNE experi-
ments with the different bands provided by the satellite to actually understand how it 
clusters differently from the visual spectrum cluster. 

According to Mandrake study to detect sulfur on the soil [17], some sulfur might be 
easy to differentiate through aerial imagery. Others might have similar visual properties 
to non-sulfur components, which might lead to false positive results. For such reason, 
it is necessary to study which visual characteristic might lead further algorithms to pro-
vide false positive results. 

Upson visualizing the results of the t-SNE for the present study, it has been suggested 
several times that this kind of image clustering could be applied through an interactive 
interface for both dataset analysis and dataset cleaning. This kind of tool would be ex-
tremely useful for cleaning larger datasets avoiding going through thousands of files.  

However, what could have the most significant impact on the success of the TSTK 
would be an improved dataset of soil ground truth alongside crop type and GPS coor-
dinates. Although the effort of the LUCAS Survey has been extremely useful, the da-
taset is not big enough for machine-learning algorithms result to be fully trusted. Fur-
ther improvement and refinement of our dataset is going to be performed, but the help 
of agricultural institutions might play a big role in the further development on this cost-
efficient technology. 
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