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Abstract—The need to achieve carbon neutrality has boosted
the mass adoption of electric vehicles (EVs). However, the electric
mobility demand uncertainty can create several technical issues
in the power system management and operation. This paper
presents a computational implementation based on different
probability distributions for creating EVs charging profiles.
Initially, aspects related to trips, EVs characteristics, and user
profiles are considered as inputs to be used to define the EVs
profiles. Then, in the second step, the processing of the inputs
aiming to obtain information such as trips during the day, types
of EVs, user profiles, trips by users, trip duration, and energy
needs are considered. The proposed case studies demonstrate
the effectiveness of the computational implementation since the
EV profiles created taking into account different numbers of EVs
show reliable information related to the EV charging profiles and
charging station usage for different days of simulation (weekdays
and a weekend).

Index Terms—Charging station usage, computational tool,
Electric Vehicles profiles, power system impact.

I. INTRODUCTION

The increase in greenhouse gas emissions, particularly car-
bon dioxide ((CO,)), is a major contributor to climate change.
Power and transport sectors are two of the most important
contributors to (CO,) emissions. At a global level, in 2022,
(CO,) from the power and transport sector increased by 261
Mt and 254 Mt, respectively, when compared with 2021 [1].
Electric vehicles (EVs) are a sustainable alternative to sub-
stitute internal combustion engine vehicles and consequently
contribute to achieving carbon neutrality targets. Therefore,
EV adoption continued to gain momentum in 2022, with over
10 million cars sold, exceeding 14% of global car sales and
with an expectation of an EV massive adoption for the next
10 years [1], [2].
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Despite their advantages, EVs mass adoption represents an
important challenge for the power system, mainly due to the
uncertain nature created by user behavior. Several issues, such
as the creation of new peaks of consumption, overloading,
voltage instability, and degradation of the local equipment,
among others, can be introduced in the electric distribution
system due to a lot of EVs charging without control [3], [4].

In response to these concerns, the best solution is to develop
effective EV management strategies [4]. A bidding strategy to
coordinate the EV charging using blockchain smart contract
was developed by the authors in [5]. The strategy considered
different driving characteristics to optimize an energy transac-
tion based on the EV charging/discharging through a demand
response program. The management of EVs in a parking lot
considering fairness rules is proposed in [6]. Nevertheless, the
information related to the EVs profiles that considered real
aspects of trips across the day, trip duration, energy needs,
and level is disregarded in both works. A smart aggregation
strategy for a pool of EVs participating in the secondary
reserve market has been proposed in [7]. Although the EVs are
managed to their optimal participation in the reserve market,
the information related to the periods for EV connection and
EV trips is based on assumptions without previous analysis of
the EV typical patterns.

To implement EV management strategies is necessary to
process data related to the EV trip requirement, hours of the
trips, type of charging usage, and type of EV, among others
[3]. The main challenge regarding the data information of EVs
is the uncertainty associated with the user pattern [8]. Several
research works have focused on developing strategies to create
EV charging profiles [9], [10]. In [11], the Electric Vehicle
Scenario Simulator (EVeSSi) tool is proposed, which enables
the definition of EVs scenarios using a built-in movement
engine. The analysis is centered on their impact on distribution
networks. A stochastic simulation methodology to generate
daily travel patterns and EV charging profiles was proposed
by the authors in [12]. The methodology considers information
related to the travel pattern model and a database with data
pertaining to 18,300 journeys undertaken on weekdays. Even
with the novelty, data such as several EV types and their tech-
nical characteristics (battery capacity, charging/discharging
efficiency, kW h/km, among others) are disregarded.
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Against this background, this paper presents a computa-
tional tool for creating EVs charging profiles. Real character-
istics related to the EV user behavior, such as EV trips, EVs
characteristics, and user profiles, are considered to obtain the
EV charging profiles with suitable information such as trips
during the day, types of EVs, user profiles, trips by users, trip
duration, and energy needs. Moreover, the computational tool
allows generating the EV charging profiles for a very large
number of EVs with satisfactory scalability.

After this introductory section. the methodology behind the
EVs profiles generation tool is presented in Section II. Section
IIT presents the results obtained in a case study, and the main
conclusions are presented in Section IV.

II. ELECTRIC VEHICLES PROFILES GENERATION

According to [13], society and mainly the utilities must be
prepared for an expected worldwide mass adoption of EVs.
Hence, it is necessary to create tools and solutions to estimate
and determine the EV power demand. This estimation is im-
portant to define the charging station deployment requirements
and assess their impact on the power systems. [14]. For the
power system, typical user patterns such as driving time, type
of charging station used, driving time, and power level of the
charging stations make the EV power demand an uncertain
variable that can represent several issues, such as high voltage
variations during the day or congestion in some points of the
network [4]. A computational Tool enabling the EV creation
profiles was developed, as shown in Fig. 1. For this purpose,
the methodology starts with the inputs read, then executes
the processing data, and finally, the outputs are obtained (EV
charging profiles).

A. Inputs

In this step, several data such as EVs characteristics, user
patterns, and charging station information are received for the

tool, more details are described below.

o EVs characteristics: information related to the EVs char-
acteristics, such as the number of EVs, the most popular
EVs and their probability of usage, EVs model, EVs
battery type, i.e., if the EV is a battery electric vehicle
(BEV), or a plug-in hybrid electric vehicle (PHEV),
energy consumed per kilometer of each EV model, EV
battery charging efficiency, EV battery discharging effi-
ciency, minimum state of charge (SoC), and maximum
SoC.

o User’s patterns: The user’s patterns are important infor-
mation since EV usage depends on users. Hence, the
tool also receives information such as typical profiles of
trips executed by the users, i.e., typical hours to start and
finish the trip, type of trip (medium, short, long), and the
average speed of the users for the trip.

o Charging station information: information related to the
charging stations (CSs) profiles, such as CSs type (public
ultrafast, public fast, public semi-fast, public slow, private
ultrafast, private fast, and private slow), location of the
CSs, i.e., residential CS or private CS, CS power, CS
efficiency, charging station probability of usage, CS and
cost are also important to be considered as inputs for the
tool. At this point, it is important to highlight that this
information is used from real data sources. For instance,
to define the probability of usage of the most EVs used,
real data from a population of EVs is analyzed, and based
on this, this probability in % is defined.

B. Processing data

In this step, the computational tool processes all the infor-
mation detailed in the previous step, more details are described
below.

o Type of EVs and their KW h/km associated: aiming to
obtain this information, the numbers of EVs, the most
popular EVs used and their probability of usage, EVs
model, battery size, type of charging/discharging effi-
ciency, energy per km and EVs battery type is processed
through a probability density function [15].

o Trips during the day: aiming to define the trips during the
day, the tool processes information on the number of EVs
and average trip distance through a gamma distribution
function [16].

o Technical information from EVs user profiles: each of
the user’s profiles and their respective percentage is
associated. So, with this input data, the tool can generate
random values based on a normal distribution [17] and the
percentage of users in each profile. With this, it is possible
to obtain technical information from the behavior of the
EV users’ profiles, such as charger power P.j,, the energy
capacity of the EV E, and the energy required for the trip
E,.. Ultimately, with this process, the computational tool
associates the trips with the EVs, considering that the
EVs with higher battery capacity will be associated with
longer trips. Consequently, the trips for each EV user can
be obtained.



TABLE I: Charging station profiles.

CS type Location Charging time Power [kW] Units % of CS  Public  Private
Ultrafast Highway t>1h P>150kW 120 2.33 v

Fast Shopping area 1h<t<1h30min 22kW<P<150kW 2235 43.40 v

Semi-Fast  Comercial area t<4h 7.4kW<P<22kW 2263 43.90 v

Normal Public area t>4h P<7.4kW 532 10.33 v

Fast Private housing zone  1h<t<1h30min  22kW<P<I150kW 3 4.05 v
Semi-Fast  Private housing zone t<4h 7.4kW<P<22kW 71 95.95 v

o Duration of the trips: the process also executes an asso-
ciation of the trips with the EVs and the average speed.
Therefore, it is possible to determine the duration of the
trip, the energy spent on the trip, and the SoC of each
EV.

o CSs usage: Concerning the CS data input, the compu-
tational tool compares the actual SoC (SoC, ) and the
required SoC (SoC, ) to define if the EV user can
perform a normal charge or, otherwise, whether the EV
user needs a faster charge. In case of a faster charge, the
tool defines the specified period to stop to charge the EV
battery, the CS that can be used by the EV user, sets
the charging duration, and makes an update of the travel
duration and (SoC,). If the EV user requires a normal
charge, the strategy defines the CS type and defines the
EV parking time, the power level of the CS used, and the
EV energy consumption required.

C. Outputs

In this final step, the EV charging profiles are obtained.
Hence, information such as EVs type population, arrival hour
in the charging station, type of charging station usage, hour
EV trips, and number of EVs charging their batteries in a
specific hour can be visualized through figures and tables.

ITI. CASE STUDY AND RESULTS

A. Case Study Specification

Based on real information from Portugal, the following
case study is proposed to analyze the computational tool’s
performance. First, aiming to validate the scalability of the
computational tool, two EV populations were considered, 1) a
small EV population, with 100 EVs; 2) a big EV population,
with 16146. For the small EV population, were created week-
day charging profiles, considering three days of simulation. On
the other hand, for the large EV population, both weekday and
weekend charging profiles were tested, considering a weekend
(two days). Concerning the average distance traveled per day,
the information was set to 46km/day as per the work in
[18], The percentage of usage of CSs was obtained from [18],
stating that the most used was 22 KW for public areas, at
43.9% and 7.4 KW at 95.95% for private areas, as shown
in Table I. The information on the most popular EVs in
Portugal was obtained from [19], in which 44% of the total EV
registered (16146) are BEV and 56% are PHEYV, as illustrated
in Table II. The average speed of cars in Portugal was defined
as 50km/h [20].

Based on [21], in Europe, nowadays 64% of the EVs charge
at home while 36% of the EVs charge at the workplace. In both
cases, relying on private charging stations.The daily profiles of

TABLE II: Most used EV models.

Model Battery Type # of EVs  Evs in percent
Tesla BEV 2195 14%
Peugeot BEV 1378 9%
BMW + BMW I BEV 1362 8%
Mercedes-Benz + BMW 1 BEV 1284 5%
Hyundai BEV 826 20%
Mercedes-Benz PHEV 3279 16%
BMW + BMW I PHEV 2505 16%
Volvo PHEV 1764 11%
Peugeot PHEV 980 6%
Wolkswagen PHEV 573 4%
TABLE III: EV users profiles for Weekdays.
Profile Trip hours User type Trip type
Home 1 8h, 18h Charge at home Short
Home 2 5h, 19h Charge at home medium
Home 3 9h, 15h Charge at home short
Home 4  8h, 10h, 12h, 15h, 17h Charge at home long
Home 5 8h, 10h, 19h Charge at home short
Work 1 8h, 10h, 14h, 16h, 18h  Charge at home/work long
Work 2 9h, 1%h Charge at home/work ~ medium
Work 3 10h, 20h Charge at home/work medium

EV usage have been defined following the profiles presented in
[22]. Moreover, several driver profiles were defined consider-
ing EV users’ behavior for a normal workday and a weekend,
as shown in Tables III and IV. For that, different types of
trips were considered (short, medium, and long), in which a
short trip is related to users that travel a short distance, for
instance, a worker that lives close to the workplace. Medium
and long trip types refer to users who live far away. During
the weekdays, five user profiles can charge their EVs only at
home, i.e., these EV users have their own CSs at home and
prefer to charge their batteries at night. Three user profiles
can charge their EVs at home or the workplace. This kind
of EV user can charge their batteries during the day. On the
other hand, during the weekend, all EV users can charge their
EVs only at home. More details about the results obtained are
discussed in the following subsection.

B. Results and Discussion

The main results for the small EV population considering
three workdays of simulation are shown in Fig. 2. Fig. 2
(left) shows the EV charging profiles created by the tool. It
is possible to observe that since 64% of the EV users charge
their batteries at home and considering the EV user’s profiles
shown by Table III, the computational tool generates profiles
with the most EVs, around 60%, charging between 17:00-
23:00. Moreover, taking into account that 36% of the EV users
have the possibility to charge their batteries at the workplace
(Table III), it can be noted that around 26 EVs charge their
batteries in the workplace. Fig. 2 (right) illustrates the CSs



TABLE IV: EV users profiles for a Weekend.

Profile Trip hours User type Trip type
Home 1 10h, 20h Charge at home Short
Home 2 11h, 15h Charge at home  medium
Home 3 8h, 21h Charge at home short
Home 4 12h, 13h, 20h  Charge at home long
Home 5 8h, 10h, 15h Charge at home short
Home 6 9h, 14h Charge at home long
Home 7 11h, 19h Charge at home medium
Home 8 12h, 21h Charge at home medium

usage by the 100 EVs that the tool can generate. It is possible
to note that during the EV charging events at the workplace,
hours 8:00-10:00, 14:00, and 16:00, the most used CSs are
private semi-fast (22kW). On the other hand, when charging
at home (17h—23h), the most used CSs are residential slow of
3.6kW and 7.2kW, which verifies the tool’s effectiveness in
generating reliable EV charging profiles using the input data.
The main results for the large EV population considering
the three workdays of simulation are shown in Fig. 3. It is
possible to observe that for this EV population, the results are
similar to the previous EV population tested. Nevertheless, the
number of EVs considered by the tool is a notable difference
in Fig. 3, since around 4000 EVs are charging at 9:00, around
2000 at 10:00/14:00, representing 25% and 12% of the EV
users are charging at workplace. On the other hand, around
8000 EVs are charging at 18:00, showing that 49% of the
users are charging at home. Moreover, the CCs usage for this
EV population created by the computational tool verifies its
performance since, during the day, only private CSs are used,
and only residential CSs are used between 18:00-23:00.
During a weekend test, all the EV users only can charge
their batteries at home, as illustrated by Table IV. The main
results for this simulation are shown in Fig. 4. Based on the
inputs related to the EV user’s profiles, the computational tool
can define the possibility that the EV users have to charge in
a specific location. This fact can be observed in Fig. 4 (left),
in which the most EV charging profiles are at night, with
around 8000 EVs charging at 20:00 and 4000 EVs charging
at 21:00, representing 31% and 25% of the users, respectively.
An important fact to highlight is that most CSs used are
residential, see Fig. 4 (right), and no private charging stations
are used. Furthermore, at several hours, for instance, 15:00-
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17:00, some EV users choose to charge at public charging
stations. In summary, for both EV populations analyzed, the
computational tool can create reliable EV charging profiles
following the inputs received. Likewise, it was also possible
to assess the tool’s scalability by generating a population
of EVs that is 161 times larger than the other. Finally, the
results illustrated in Fig. 2, Fig. 3, and Fig. 4 can be exported
in comma-separated values files, allowing their use in EV
management strategy tools, which can be very useful to
implement more realistic EV coordination, mainly due to the
fact that electric mobility is seen as an interesting alternative
to achieve the carbon neutrality.
IV. CONCLUSIONS

A computational tool for the creation of electric vehicles
(EVs) charging profiles has been proposed in this paper. Real
data related to Portugal, such as the most EVs used by the
population, average trip distance, average speed, and the most
charging station (CSs) installed, among others, are used for the
tool aiming to create reliable EV charging profiles. Two types
of EV populations are simulated, a small EV population and
a big EV population, considering different user profiles and
three days of operation for weekdays and two for a weekend.
Simulation results demonstrated that the computational tool
proposed is able to create several reliable EV charging profiles
that follow the distributions of the input data. Moreover, the
scalability of the computational tool is verified since for the
big EV population (1614 EVs), the results indicate the same
performance as in the case of the small EV population.

In future work, the authors contemplate implementing the
computational tool for more days of simulations (one year) and
considering the outputs of the tool as inputs to be analyzed to
execute smart EV charging coordination in different tools and
applications, such as for buildings management (residential
and business), to access the impact on the distribution system
or even in the global energy system.
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