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Abstract—With the ever growing number of technologies that
interact with the grid, optimization and control strategies become
critical to ensure the quality of service without disruption. This
work analyses the application of two operational planning opti-
mization methods, Mixed Integer Linear Programming (MILP)
and Hybrid-adaptive Differential Evolution with decay function
(HyDE-DF) metaheuristic, applied to an Energy Community
including generation, consumption flexibility, energy storage
systems, electric vehicles with vehicle-to-grid capability and the
electricity exchange with the main network, with the aim of
minimizing operation costs. Throughout this work, differences
between approaches are highlighted, as well as considerations for
each method to help convergence and improve solution quality.
Both methods achieve comparable operation costs, 159.3330 and
153.4883 for MILP and HyDE-DF, respectively.

Index Terms—Electric Vehicles, Energy Communities, Hybrid-
adaptive Differential Evolution, Metaheuristics, Mixed Integer
Linear Programming

I. INTRODUCTION

Energy transition is an ever-growing multidisciplinary topic
of research, bringing about innovation to multiple sectors that
affect daily life [1]. European Union has proposed set a set of
guidelines defining the targets to achieve net-zero greenhouse
gas emissions by 2050, presenting strategies such as increasing
green energy resources and investment on identified key sec-
tors. Among highlighted sectors are electricity, transportation
and industry [2], [3].

Optimization is a research field that aims to provide the
user with information on what is the best solution for a given
problem, finding applications in a multitude of fields. Stork
et al. [4], present a taxonomy for optimization algorithms,
as well as providing a review of existing algorithms and
applications that range from hyperparameter optimization in
neural networks to deciding the best path to take, i.e. travelling
salesman problem.

In the energy field, optimization is ever present in sev-
eral problems. Active research areas include forecasting [5],
storage [6], load disaggregation [7], scheduling [8], [9], and
energy trading [10]. Other research problems include achieving
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maximization of self-consumption [11] and cost minimization
[12]. How these problems are modelled determines the choice
of algorithm for solving, directly influencing the degree of
precision of the solution. Linear Programming (LP) methods
are widely known, having a deterministic and exact solution.
On the other side of the spectrum lie function approximation
methods that aim to approximate to a value as best as possible,
with examples of algorithms such as metaheuristics.

Considering the challenges that ECs face, optimization and
planning becomes a key area of intervention with works ex-
ploring how to best use the various RES of a community such
as EVs, storage and energy trading. In [13], the authors study
the use of a community storage system and apply a multi-
objective optimization (MOO) method taking into account
grid costs and emissions, with results showing a benefit of
using said system. In [12], a LP approach is adopted in a
study on the impact an EV-centered market approach for ECs,
where the authors show benefits to the network whenever
a prosumer-to-vehicle (P2V) strategy is considered. Various
other studies have tackled the issue of managing a Community,
with different approaches such as Reinforcement Learning
being also considered [14].

This work provides with two main contributions - the first
lies on a Python implementation of the HyDE-DF algorithm
[15], with the second being the comparison between the
implementation of the same problem using a Mixed Integer
Linear Programming approach and a HyDE-DF optimization
approach on the optimization of an ECs, emphasizing on the
issues and required steps to achieve comparable results.

II. MATERIALS AND METHODS

The entirety of this work was implemented in Python, with
the code being publicly available in [16]. The implementation
counts with two major components - a mixed integer linear
programming approach, implemented using the Pyomo pack-
age (6.4.0) [17], and IBM ILOG CPLEX Optimization Studio
22.1.0. The second component is a fresh implementation of
the HyDE-DF algorithm that was originally developed in
MATLAB.

Pyomo is a package for Python that focuses on optimization,
providing a unified framework capable of handling differ-
ent optimization techniques. Various known solvers including
CPLEX can be used and changed without requiring specialized
development, depending on the desired method.
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Both components were developed on a laptop with an
Intel(R) Core(TM) i7-8750H CPU and 16 GB of RAM.
The implementation does not count with GPU-accelerated
packages, relying entirely on the CPU.

A. Hybrid-adaptive differential evolution with a decay func-
tion (HyDE-DF)

HyDE-DF is a modified version of Hybrid-adaptive differ-
ential evolution (HyDE). Population generation is inspired by
the original differential evolution algorithm [18], in which each
population element is updated by a factor of the difference
between two other elements. The operator, as described by
the authors, is presented in Equation 1:

m⃗i,G = x⃗i,G+ δG · [F 1
i (ϵ · x⃗best− x⃗i,G)]+F 2

i (x⃗r1,G− x⃗r2,G)
(1)

where x⃗i,G is the current vector, x⃗best represents the best
found solution thus far, and x⃗r1,G and x⃗r2,G represent two
individuals from the population. Vectors x⃗i,G, x⃗r1,G and
x⃗r2,G are different among themselves. The hybrid-adaptive
component of the algorithm is responsible for keeping track of
scale factors for each population element throughout iterations.
These are represented in Equation 1 by F 1

i , F 2
i and ϵ, where

ϵ = N (F 3
i , 1), inspired by [19]. The term [F 1

i (ϵ·x⃗best−x⃗i,G)]
promotes convergence in the direction of current best candi-
date solutions [15], having its weight reduced over time by a
decay factor δG , similar to Simulated Annealing (SA) [20].

The chosen encoding strategy for HyDE-DF solutions for
this work is given by a vector of length N , where N represents
the total number of variables of the problem. This is achieved
through the process of turning the variable matrices in vectors,
followed by concatenation. Each solution can be decoded as
the size of each variable is known beforehand, as well as the
placement within the encoded vector.

The HyDE-DF implementation for this work follows the
implementation provided by the original authors in [21].
However, the original implementation only allows the defi-
nition of a single variable range, shared across all variables.
This constitutes a challenge in problems where, for example,
different variables operate in different ranges. Motivated by
this issue, the current implementation of HyDE-DF allows for
the specification of individual variable ranges, furthering the
algorithm’s capabilities.

Due to the chosen encoding, the interactions and depen-
dencies between variables are not taken into account and thus
feasibility of generated solution is not guaranteed. Following
the generation of the new population at each iteration, every
population member is analyzed and fixed based on the MILP
constraints. As with the original implementation, elitism is
promoted, with the best solution of each iteration injected
into the next iteration. Several implementation optimizations
were carried out to ensure this process is as fast as possible.
The use of matrices instead of loops for variable fixing was
prioritized to make code execution more efficient. The use of
Cython [22], further contributed to trim the execution time by
compiling the developed Python code in C, taking advantage
of the latter’s speed. These improvements resulted in a final

value of 35 iterations per second, from a starting value of 1.5
iterations per second when considering a population size of
10 individuals, using the same hardware.

Finally, besides the mentioned solution fixing, an initial
solution was also provided to HyDE-DF to accelerate the
convergence of the algorithm. The initial solution provided to
the algorithm had maximum generation values for the gener-
ators, maximum import quantities, maximum charging station
consumption and storage flags set to battery charging. The
remainder of the variables are set to zero. This solution was
given after empirically testing multiple variable combinations.

B. Problem Formulation

The work presented is based on a scenario described by
[23], where an Energy Community composed by seven gen-
erators, six loads, three batteries and five electric vehicles is
considered. Furthermore, it is possible to import and export
energy to the main grid, as well as using electric vehicles to
inject power into the grid. The scenario has a total duration
of 24 hours, with a time resolution of one hour.

Each of the following subsections presents the constraints
for the respective aspects of the scenario. The implementa-
tion approach for Electric Vehicles using HyDE-DF is also
described, describing the heuristic utilized.

C. Power Imports and Exports

The considered scenario allows the use of energy supplied
by the main grid(import) whenever the generation and power
discharge from storage systems and EVs cannot meet the
requested power demand of the loads and EVs. The possibility
to supply energy to the main network is also contemplated
to account for periods where there is a surplus of power
and cannot be stored or there is a chance to earn revenue.
Maximum values are defined for both import and export
values, pMaxImp and pMaxExp, respectively. Equation 2
represents the constraint for maximum import and Equation 3
represents the constraint for maximum export quantities.

pImpt ≤ pMaxImp,∀t ∈ T (2)

pExpt ≤ pMaxExp,∀t ∈ T (3)

D. Generation

The generation resources of this scenario are distinguished
between renewable and non-renewable generators. Equation
4 represents the constraint on generated power by renewable
sources gAct, based on forecasted values gForecast. The
minimum and maximum power generated by non-renewable
sources are contemplated by constraints 5 and 6. The binary
variable genXo represents the state of the non-renewable
generator, complemented by the minimum generation value
gMinAct and maximum gMaxAct.

gActg,t + gExcActg,t = gForecastg,t,∀g ∈ G,∀t ∈ T (4)
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gActg,t ≥ gMinActg,t × genXog,t,∀g ∈ G,∀t ∈ T (5)

gActg,t ≤ gMaxActg,t × genXog,t,∀g ∈ G,∀t ∈ T (6)

E. Loads

The considered loads are a parameter, drawn from forecast
consumption values. These are grid needs that should be met,
with either power from generators or stored. Load reduction,
curtailment, as well as energy not supplied are considered as
extra variables to relax the problem and avoid an instance in
which the problem does not have a solution. Load reduction,
lRed, considered in Equation 7 contemplates the possibility to
reduce energy provided to a consumer, helping the EC man-
ager to prevent service disruption. This can also be achieved
by load curtailment lCut, in Equation 8, in which the power
provided is completely cut off using a binary variable loadXo.
Finally, Equation 9 describes the relationship between all load
variables and considers the energy not supplied, lENS.

lRedl,t ≤ loadMaxRedl,t,∀l ∈ L,∀t ∈ T (7)

lCutl,t = loadl,t × loadXol,t,∀l ∈ L,∀t ∈ T (8)

lENSl,t + lRedl,t + lCutl,t ≤ loadl,t,∀l ∈ L,∀t ∈ T (9)

F. Storage

Batteries can be discharged to provide energy to the grid, as
well as charged whenever possible. Constraints are imposed
on the maximum storage and minimum storage by sMin
and sMax, respectively. Charging and discharging actions,
sDchXo and sChXo are mutually exclusive as shown in
Equation 10. Each action has associated maximum values,
represented by sDch and sCh, presented in Equations 11 and
12. Equation 15 describes the update of battery state, sEner,
establishing the required temporal dependencies, where the
efficiency of charging (ηch), and discharging (ηch) is also
considered. The initial state of charge (SOC) of batteries
is considered a parameter, in the form of a percentage of
maximum capacity. For the HyDE-DF approach, the variable
sMinRelax was not considered.

sDchXos,t + sChXos,t ≤ 1,∀s ∈ S, ∀t ∈ T (10)

sDchs,t ≤ sMaxDchs,t × sDchXos,t,∀s ∈ S, ∀t ∈ T (11)

sChs,t ≤ sMaxChs,t × sChXos,t,∀s ∈ S,∀t ∈ T (12)

sEners,t ≤ sMax,∀s ∈ S,∀t ∈ T (13)

sEners,t ≥ sMins,t − sMinRelaxs,t,∀s ∈ S, ∀t ∈ T (14)

sEners,t = sEners,t−1+sChs,tηch−
sDchs,t

ηdch
,∀s ∈ S, ∀t ∈ T

(15)

G. Electric Vehicles

Similarly to the batteries, it is possible to charge and
discharge the vehicles with the added restriction of requiring
an active connection to a charging station. To aid the con-
vergence of HyDE-DF, a heuristic was applied for electric
vehicles. Whenever a vehicle is connected to a charging
station, the next SOC requirement will be taken into account
and the amount of timesteps required to meet this value are
calculated. This is possible as the schedule for the vehicles
is a considered parameter, resulting in a charging plan for the
vehicle, effectively rewriting the generated solution altogether.

vDchv,t + vChv,t ≤ 1,∀v ∈ V,∀t ∈ T (16)

vDchv,t ≤ vMaxDchv,t × vDchXov,t,∀v ∈ V,∀t ∈ T
(17)

vChv,t ≤ vMaxChv,t × vChXov,t,∀v ∈ V,∀t ∈ T (18)

vEnerv,t ≤ vMax,∀v ∈ V,∀t ∈ T (19)

vEnerv,t ≥ vReqv,t − vMinRelaxv,t∀v ∈ V,∀t ∈ T (20)

vEnerv,t ≥ vMin− vMinRelaxv,t∀v ∈ V,∀t ∈ T (21)

vEnerv,t = vEnerv,t−1 + vChv,tηch − vDchs,t

ηdch
,

∀v ∈ V,∀t ∈ T

(22)

H. Charging Stations

Each station supports a single electric vehicles at any given
time. A defined schedule and knowledge of when a vehicle
will be connected to any given station is provided as parameter,
with the binary variable csXo indicating the connection state.
Charging stations consider maximum and minimum charging
limit, expressed by the csMax and csMin parameters in
Equation 23 and 24. The HyDE-DF approach considers the
handling of the charging stations as part of electric vehicle
schedule building as they are closely related.

csPowerc,t ≤ csMaxc,t,∀c ∈ C,∀t ∈ T (23)

csPowerc,t ≥ csMinc,t,∀c ∈ C,∀t ∈ T (24)
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csPowerc,t = (vChv,t − vDchv,t)× csXoc,v,t,

∀c ∈ C,∀v ∈ V,∀t ∈ T
(25)

csPowerNetc,t = (vChv,tηch − vDchv,t

ηdch
)× csXoc,v,t,

∀c ∈ C,∀v ∈ V,∀t ∈ T
(26)

I. Balance and Objective Function

At each timestep, the grid balance of all components must
amount to zero. This can be expressed by the difference of
the sum of generation and imports, and load consumption,
batteries, vehicles and charging stations. This equality is
represented by Equation 27.

0 =

G∑
g

gActg,t − gExcActg,t + pImpt − pExpt

−
L∑
l

loadl,t − lRedl,t − lCutl,t − lENSl,t

−
S∑
s

sChs,t − sDchs,t

−
V∑
v

vChv,t − vDchv,t,∀t ∈ T

(27)

Equation 28 describes the objective function for the mixed
integer linear programming part of this work, with its several
components. Each variable has a cost associated designated
by ϕ.

gens =

G∑
g

T∑
t

gActg,tϕ
gen
g,t + gExcActg,tϕ

NDE
g,t

loads =

L∑
l

T∑
t

lRedl,tϕ
red
l,t + lCutl,tϕ

cut
l,t + lENSl,tϕ

ENS
l,t

stor =

S∑
s

T∑
t

sDchs,tϕ
dch
s,t −sChs,tϕ

ch
s,t+sMinRelaxs,t×ϕsMin

s,t

v2g =

V∑
v

T∑
t

vDchv,tϕ
dch
v,t −vChv,tϕ

ch
v,t+vMinRelaxv,t×ϕvMin

v,t

rest =

T∑
t

pImptϕ
buy
t − pExptϕ

sell
t

obj = gens+ loads+ stor + v2g + rest (28)

To aid the convergence process of the HyDE-DF meta-
heuristic, a penalty was added to the whenever there is a
period with excessive import or export power. Equation 29

illustrates the adjusted objective function with the added
penalty component.

obj = gens+ loads+stor+v2g+rest+

T∑
t

penaltyt (29)

III. RESULTS

Considering the MILP approach, a value of 159.3330 was
achieved on the described scenario, against the obtained best
of 153.4883 by the HyDE-DF method. The most significant
difference between approaches is the time execution, with
MILP achieving a solution in just 0.1898s and HyDE-DF
requiring an average of 1769.1994s. Figure 1 depicts the
evolution of ten runs of HyDE-DF over the course of 10000
iterations, with a population size of 50.

Fig. 1. HyDE-DF best solution fitness evolution

Table I summarizes the results of both approaches, contem-
plating total generation, total load reduced and curtailed, total
battery and vehicle usage, as well as imports and exports.

TABLE I
TOTAL VARIABLE AMOUNTS

MILP HyDE-DF
pImp 829.5 629.8
pExp 0.0 0.0
gAct 1084.3 1151.1

gExcAct 0.0 0.0310
lRed 0.0 1.0330
lCut 0.0 0.0
lENS 0.0 0.1260
sDch 15.0 58.8
sCh 3.2 0.0

vDch 0.0 0.0
vCh 104.0 128.8

Regarding generation, the total of amount generated energy
amounted to 1084.3 kWh and 1151.1 kWh for the MILP and
HyDE-DF approaches. Figure 2 presents the values for the
sum of gAct and gExcAct throughout each timestep for both
methods.

In terms of imports and exports, MILP imported a total
amount of 829.5087 kW, while HyDE-DF imported 629.7680
kW. Both approaches did not export any energy. Figure 3
represents the volume of imports and exports acquired by both
methods. The total expenses on imports were of 71.1080 C
for MILP and 55.9148 C for HyDE-DF.
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Fig. 2. Produced and excess generation values

Fig. 3. Imports and export quantities

IV. CONCLUSION

This work presented a comparison of two approaches on
a scenario consisting of a micro-grid composed by seven
generators, six loads, three batteries and five vehicles, as well
as allowing for import and export of power. This work also
presents a contribution in the form of a Python implemen-
tation of HyDE-DF. The two considered approaches, Mixed
Integer Linear Programming and the HyDE-DF metaheuristic
produced very similar results, with the metaheuristic achieving
a lower objective function value, as well as making more use
of available storage resources, generators, while achieving a
lower import cost through the scenario.
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