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Abstract—Non-intrusive Load Monitoring (NILM), or load
disaggregation, aims to decompose aggregate power consumption
into appliance components. Factors such as noise power affect
algorithm performance, reducing accuracy and increasing com-
plexity. While existing literature often relies on standard machine
learning metrics to report noise power proportion in aggregate
consumption, these are overall measures that do not specify the
ratio between appliance consumption and noise power.

This paper proposes a noise metric that assesses the propor-
tion of dataset noise relative to an appliance’s consumption in
NILM. The proposed metric’s sensitivity and applicability are
assessed for different data scenarios using a real-world dataset.
Additionally, the paper explores a potential association between
the proposed metric and disaggregation performance is also
inspected. Furthermore, the proposed metric is compared to
existing noise metrics to highlight its unique contributions. The
results demonstrate that the proposed metric effectively quantifies
noise proportion with respect to specific appliances across various
data scenarios. It exhibits robustness to suitable granularity
variations and complements other noise metrics in interpreting
NILM experiments.

Index Terms—Load Disaggregation, Signal Noise, Appliance
Consumption, Disaggregation Complexity, Comparability

I. INTRODUCTION

CONSISTENT reduction in greenhouse gas emissions is
necessary for sustainable global energy distribution. Ini-

tiatives have been launched over the years to discuss inefficient
energy use in buildings, leading to significant investments in
smart meters for monitoring overall building consumption and
developing novel data-based services [1]. In this regard, Non-
Intrusive Load Monitoring (NILM) [2], or load disaggregation,
is a technique that uses machine learning and signal process-
ing to estimate appliance consumption using a single meter,
typically a smart meter that measures the aggregate signal [3].

In NILM datasets, noise is part of the aggregate signal due
to measurement errors or unknown appliance consumption.
In previous research, dataset noise was observed to affect
algorithms’ performance in NILM [4]. The probability of an
algorithm correctly detecting an appliance event decreases
with measurement noise [5]. For buildings with multiple
appliances and only a few submetered, the proportion of noise
is significant, increasing the problem complexity [6]. While
removing noise entirely improves performance, disaggregation
results can be unrealistic and misleading [7]–[9].

Proper noise analysis is crucial for load disaggregation, as
it affects load identification and consumption estimation. To
ensure comparability, reporting dataset noise is essential in
experiments [10]. Two commonly considered noise metrics
in NILM are the noise-to-aggregate ratio (NAR) [7], [8] and
signal-to-noise ratio (SNR), e.g., [11], [12]. SNR measures the

proportion of a signal to underlying noise and is widely used
in signal processing. On the other hand, NAR is a NILM-
specific metric that quantifies the percentage of noise in the
aggregate signal.

The impact of noise on disaggregating specific appliances
varies due to differences in appliance power consumption and
usage patterns. For instance, noise is more likely to overcome a
television than a washing machine because it consumes much
less power. General noise metrics like NAR and SNR may not
accurately represent the noise impact on different appliances.
Therefore, a measure that accounts for the noise proportion
with respect to each appliance is needed.

In this regard, the present work proposes the Appliance-to-
Noise Ratio (ANR), a non-accumulative metric that averages
the appliance consumption and dataset noise ratios at each
instant. To our knowledge, this work is the first to extend
noise analysis to individual appliances. An extensive analysis
to evaluate the applicability of ANR is carried out for different
appliances in a real-world dataset. First, the proposed metric’s
sensitivity is assessed for different sample rates, and then
computed against SNR for different data scenarios. Finally,
the possible association between noise and the problem com-
plexity is investigated by considering the proposed metric.

The paper is structured as follows: Section II provides
background and related work on noise analysis in NILM. Sec-
tion III defines the proposed metric and examines its general
behavior. Section IV describes experiments to evaluate the
metric’s sensitivity and applicability in different data scenarios
and its impact on NILM algorithm performance. Section V
presents and discusses the results of the metric assessment.
Finally, Section VI summarizes the main conclusions, limita-
tions, and future research directions.

II. RELATED WORK

In various machine learning fields, noise can significantly
increase the complexity of models and learning time, and
the performance of learning algorithms is degraded [13]. As
previously stated, the dataset noise affects the probability of
correct detection of a device in NILM [5]. Since the percentage
of dataset noise can vary significantly across datasets, it is
essential to report it to reach comparability between NILM
problems and thus enable fair benchmarking of NILM ap-
proaches [10].

Existing noise metrics in NILM calculate the overall noise-
to-aggregate ratio. SNR (also SNRdB , in logarithmic decibel
scale) is a well-known signal processing metric used in ma-
chine learning. In NILM, SNR reports the magnitude of the
aggregate signal concerning underlying noise and the sensi-
tivity of algorithm accuracy and load identification rates [11],
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[12]. Alternatively, NAR is a NILM-specific metric reporting
the percentage of noise in the aggregate data [8], [10]. SNRdB

is more suitable than NAR to handle wide dynamic ranges
in signals [14], i.e., large amplitudes between aggregate and
noise.

Existing noise metrics do not consider specific appliance
types and their individual characteristics. Noise levels in the
dataset can significantly impact the disaggregation perfor-
mance, especially when the noise proportion is substantial
relative to appliance consumption. Still, to the best of our
knowledge, the Instrumentation and Measurement literature
comprises only a few papers that address noise in the context
of NILM [15]–[17]. However, these works only acknowledge
the existence of noise without proposing a detailed noise
analysis or quantification methods. The proposed measure is
based on the definition of SNRdB to quantify noise in NILM
datasets and aims to compare appliance power consumption
with noise power.

III. METRIC PROPOSAL

A. Metric Definition

In terms of power estimation, the NILM problem is concep-
tually described as providing estimates (x̂(1)

t , · · · , x̂(M)
t ) of the

real power consumption of M appliances (x
(1)
t , · · · , x(M)

t ), at
time t, that compose the aggregate power consumption yt,
ending up with:

ŷt =

M∑
i=1

x̂
(i)
t + ηt (1)

where ŷt is the estimate of yt and ηt is an error term (or
noise) at t that refers to measurement errors from the sensors
or unmetered/unknown appliance signals.

The total or partial noise levels can be computed if the ag-
gregate and sub-metered appliance consumption are available
in the same units, e.g., active power. The SNR computes the
level of a desired signal to the level of noise in the aggregate
signal,

SNR =
P̄agg

P̄noise
=

∑T
t=1 yt∑T

t=1 |yt −
∑M

m=1 x
(m)
t |

(2)

where P̄agg and P̄noise are, respectively, the average aggregate
power per record and the average noise per record. Due to
the wide dynamic range, SNR is typically converted into the
logarithm decibel scale, i.e., SNRdB = 10 log10 SNR.

The SNR as defined in Eq. (2) can be written as the sum
of two components,

∑T
t=1 yt − x

(k)
t∑T

t=1 |yt −
∑M

m=1 x
(m)
t |

+

∑T
t=1 x

(k)
t∑T

t=1 |yt −
∑M

m=1 x
(m)
t |

(3)

where the first term is the sum of the ratio between the total
aggregate signal minus appliance k and total noise, and the
second term is the ratio between appliance k total consumption
and total noise. The second term of Eq. (3) is of particular
interest for this work because it allows direct comparison
between the amount of an appliance consumption with the

noise, which can significantly impact the disaggregation per-
formance. Henceforth, it represents a ratio between appliance
consumption and noise. Notice that the second term in Eq. (3)
is an overall quantity, which does not consider the impact of
noise on an appliance at a time instant. Furthermore, it could
be misleading when an appliance is rarely used or consumes
little power. This quantity could be neglected in such a case,
which is not a valid assumption.

Thus, to obtain a more informative metric over time, the
mean across all instant ratios is calculated and defined as
Appliance-to-Noise Ratio (ANR), for an appliance k:

ANRk =
1

T

T∑
t=1

x
(k)
t

|yt −
∑M

m=1 x
(m)
t |

(4)

B. General Metric Behavior
For Eq. (4), ANR is undefined if individual ratios have zero

denominators. Thus, only time instants with nonzero noise
power are considered for the metric calculation. There are
three possible cases for the appliance-to-noise ratios at each
instant:

1) When the appliance consumption is zero and noise
power is nonzero, the ratio is zero. The appliance is
OFF, and there is noise for specific time instants.

2) When both the appliance consumption and noise power
are nonzero, the ratio is greater than zero. The appliance
is ON, and there is noise for specific time instants.

a) If noise is equal to or greater than the appliance
consumption, the ratio is between zero and one.
The ratio is close to zero for minimal appliance
consumption and significant noise power.

b) If the appliance consumption is greater than noise,
the ratio is greater than one. The ratio is notably
greater than one if the appliance consumption is
much larger than the noise.

Hence, since the ANR averages across the ratios at each
data point, the following scenarios are possible:

• ANR= 0, if the appliance is OFF for all time
instants, i.e., all ratios are described by case B(1).

• ANR̸= 0, then 0 < ANR < 1 if the appliance is
ON for a short time, i.e., most ratios in case B(1)
or noise power overcomes appliance consumption
for most time instants (case B(2a)). The latter is
expected for low-power appliances, such as televi-
sions.
Alternatively, ANR > 1 if the appliance is ON for
a long time (opposite of case B(1)), or appliance
consumption overcomes noise power for most time
instants. The latter is expected for high-power ap-
pliances like washing machines.

3) If there is no dataset noise (the aggregate data matches
the ground truth for each instant), the ANR is undefined
as reporting dataset noise is irrelevant.

IV. METRIC ASSESSMENT METHODOLOGY

Three experiments were conducted to analyze the appro-
priateness of ANR for reporting noise. First, the metric’s
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sensitivity to different sampling rates is assessed in a real-
world dataset to inspect the reliability and representativeness
of the results regarding the proportion of noise with respect
to the appliance. Second, the ANR is computed hourly, bi-
weekly, and monthly, highlighting patterns in noise proportion
across different data scenarios and comparing results to SNR.
Finally, a possible relationship between the performance of
NILM algorithms and noise is assessed using the proposed
metric to complement the analysis of the results. The code for
reproducing the experiments is available in https://anonymous.
4open.science/r/IEEE-TIM-21C7.

A. Dataset and Selected Appliances

In the following experiments, the REFIT dataset [18] is used
for demonstrating ANR computation. It includes aggregate and
appliance measurements in the same power units, enabling
ANR calculation. The consumption data from 20 UK houses
is timestamped at approximately 8-second intervals. The ex-
periment period is one year, and active power is the measuring
unit. Various appliance types were considered, such as multi-
state appliances like washing machines and dishwashers (type
II) [19], [20], as well as permeant appliances like televisions
and computers (type IV) [19], [21]. The inclusion of different
appliance types ensures more generalizable conclusions.

B. Experiment 1 - Sensitivity to Sampling Rates

This experiment illustrates ANR computation for different
sample rates in order to assess to what extent the ANR
varies with granularity and how it can impact the conclusions
obtained from the results. The chosen sample rates are: ≈ 1/8
Hz, 1/60Hz, and 1/300 Hz. The 1/8 Hz scenario corresponds
to the original sample rate, while the other two data gran-
ularities were obtained through down-sampling. Notably, the
1/300 Hz rate is a more substantial down-sampling compared
to the original rate. The sample rates were selected to track
every appliance activation, i.e., any appliance transition from
an off-state to an on-state.

The houses were selected such that each appliance was
present, ensuring similar conditions for noise and build-
ing/consumer characteristics. The experiment focuses on
washing machines, dishwashers, televisions, and computers in
houses 1, 5, 6, 15, 16, 18, and 20. The variation of ANR results
with sample rate is analyzed for each appliance, comparing
them with SNR for each house.

C. Experiment 2 - Computation of ANR for Different Appli-
ances and Comparison with SNR

This experiment computes ANR for different data scenarios:
hourly, bi-weekly, and monthly. Only house 1 from the REFIT
dataset is considered for illustration, with a sample rate of
1/60. At first, ANR is computed hourly for each appliance
and is compared to appliance consumption, noise, and SNR.
The advantage of using ANR over SNR is inspected. A similar
procedure is followed for bi-weekly and monthly scenarios.

D. Experiment 3 - Assessment of the Relationship between
NILM Performance and the Dataset Noise using ANR

This experiment evaluates a potential relationship between
ANR and disaggregation performance. For illustration, the
performance and ANR are obtained hourly, focusing on house
1. The sample rate is set at 1/60 Hz. The impact of noise
on disaggregation for high-power and low-power appliances is
evaluated, because noise has different effects depending on the
appliance type. DNN-NILM algorithms like Window Gated
Recurrent Units (WGRU) and Attention Recurrent Neural Net-
works (ARNN) are chosen for the disaggregation experiments,
as DNNs typically outperform traditional NILM algorithms
[22], [23]. The implementation of WGRU and ARNN follows
the architectures in NILMTK-Contrib package [24] and [9].
The employed algorithms are trained for a maximum of 150
epochs, with batch size equal to 128.

To avoid underfitting and overfitting, stop patience of 50
epochs and an early stopping criterion are considered, respec-
tively. The sliding window size for WGRU and ARNN should
be different for each appliance due to different activation
durations and patterns [25], [26]. For the washing machine,
dishwasher, television and computer, a window size of 50, 15,
10 and 10 samples was considered, respectively.

The data is divided into training and testing, with 67% and
33% apportioned to each. In case of missing data, the data
rows are dropped. The algorithm performance is assessed for
each hour of the day. For performance evaluation, a normalized
Mean Absolute Error (MAE) [27], [28] is considered. MAE
assigns equal importance to all errors, which is crucial when
examining performance variations across appliances with dif-
ferent consumption levels. The normalization constant is cho-
sen to be the standard deviation, which enables to weigh MAE
based on the variability of appliance consumption values. This
approach ensures accurate performance assessment even for
appliances with lower or higher power consumption.

In terms of software, the disaggregation experiments were
carried out in Python 3.6.8, with Keras [29] running on
the Tensorflow [30] backend. The cuDNN library (version
8.1.0) has been installed for GPU-accelerated calculations.
Hardware-wise, the computer consists of an Intel i7− 8700k
CPU, an NVIDIA 1080TI graphics card, and 64 GB of RAM.

V. RESULTS AND DISCUSSION

A. Experiment 1

The ANR is expected to be more prominent for the washing
machine and dishwasher than for the computer and television.
Fig. 1 shows that this assumption holds, considering, for
instance, 1/60 Hz granularity. Furthermore, in Fig. 1, ANR
does not vary significantly across the selected sample rates.
This is likely because the selected rates capture most appliance
activations. If lower rates were used (e.g., 1 sample for
every 15 minutes), ANR values could vary because not all
appliance activations would be captured. For instance, if a
TV or computer is turned on for 10 minutes, it may be
missed. Hence, the effectiveness of ANR for reporting noise
with respect to appliance consumption also depends on the

https://anonymous.4open.science/r/IEEE-TIM-21C7
https://anonymous.4open.science/r/IEEE-TIM-21C7
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Fig. 1. ANR for washing machine, dishwasher, television and computer for different sample rates across the houses studied in experiment 1. The SNR across
the houses for a sample rate of 1/60 Hz is also depicted.

sampling rate. With appropriate rates, ANR provides reliable
reports.

In terms of SNR, houses 18 and 20 have higher SNRs,
while houses 1 and 15 have lower ratios (Fig. 1). However,
this does not imply that appliance consumption in houses 18
and 20 exceeds the noise significantly. If ANR is considered,
the same can only be concluded for some appliances, with the
washing machine having the largest ANR in houses 1 and 15,
while one of the lowest ANR occurs in house 20. Therefore,
while SNR is useful for overall noise reporting, ANR offers a
more detailed analysis of noise with respect to each appliance.

B. Experiment 2

1) Daily hour consumption: From Fig. 2, the washing
machine and dishwasher appliances have similar ANR patterns
throughout the day, with one small peak at night and a larger
peak during the day. The ANR pattern is different for the
television and computer, as it increases throughout the day and
reaches a peak in the evening. The ANR is more significant for
the washing machine and dishwasher than the television and
computer. The SNR also varies throughout the day, reaching
peak values between 12 am and 3 pm. However, the SNR
pattern does not resemble the ANR patterns for each appliance.
Hence, ANR is more suitable than SNR for analyzing and
reporting noise at the appliance level.

By inspecting Fig. 3, the ANR patterns are reflected in
those appliances’ consumption. If one picks, for instance, the
dishwasher consumption at 9 am, it is smaller as compared
to 5 am and 10 am. Given the similarity in the total noise
power at these times, the ANR value is naturally lower at 9

am as compared to 5 am and 10 am. Also, at 8 pm, the total
dishwasher consumption is smaller than that at 5 am and 10
am, which is supported by a lower total consumption at 8 pm.
If, instead, one examines each hour of the day separately, it
can also be seen that a larger power consumption leads to
a larger ANR, and vice-versa. For instance, at 22 pm, the
total consumption for the washing machine and dishwasher
is much smaller (near zero) in comparison with the television
and computer, which is a tendency that holds in terms of ANR.

Hence, the ANR is predicted satisfactorily by inspecting the
total appliance’s consumption and noise.

2) Bi-weekly consumption: Fig. 4 shows a considerable
variation of the ANR when computed bi-weekly for all ap-
pliances. Again, ANR is greater for the washing machine
and dishwasher than for the television and computer. From
Fig. 5, the total consumption varies across the biweekly
periods for each appliance. For instance, for the computer, the
total consumption increases across biweekly periods, while the
opposite seems to happen for the television. The fluctuation in
the total noise power accounts for the alterations in the ANR
patterns.

For the SNR, there is significant variation throughout the
bi-weekly periods; the SNR decreases until week 19 and then
increases. Total noise power is also not conclusive concerning
SNR, which depends on the aggregate consumption (Fig. 5).
Therefore, SNR does not reflect the patterns obtained with
ANR for each appliance. Again, ANR is shown to be more
suitable than SNR for analyzing and reporting noise at the
appliance level.

3) Monthly consumption: Fig. 6 shows that ANR varies
throughout the months, with the washing machine and dish-
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Fig. 2. ANR for the washing machine, dishwasher, television, and computer,
and SNR in house 1 for each hour of the day in experiment 2.

washer showing greater ANR than the television and com-
puter. The total consumption for the appliances varies across
the months and resembles what was obtained for biweekly
periods. Again, the alterations in ANR are explained by a
joint analysis total appliance consumption and noise power
across the months (Fig. 7). Furthermore, the ANR results for
each appliance are not reflected in SNR. Once again, ANR is a
more appropriate metric than SNR for analyzing and reporting
the percentage of noise with respect to each appliance.

C. Experiment 3

The WGRU algorithm generally achieved the best perfor-
mance for each appliance in the experiments. The perfor-
mances for the selected appliances in house 1 for each hour
of the day are shown in Fig. 8. For the washing machine, the
error increases at night (9 pm to 12 pm), in which the ANR
is small (Fig. 2). Although the washing machine is minimally
utilized for those hours, the algorithm predicts appliance power
and the disaggregation performance is worse. Furthermore, the
error decreases in the morning and afternoon (1 am to 8 pm),
in which the ANR is larger than zero. Hence, for the washing
machine, the performance improves with the ANR, and vice-
versa. For the dishwasher, the conclusion is similar, as the
error increases at night and early morning (6 pm to 2 am),
in which the ANR is small. In the remaining hours, the error

Fig. 3. Total power consumption of the washing machine, dishwasher,
television and computer, and total noise power in house 1 for each hour of
the day in experiment 2.

is small and the ANR is large. For the television, the ANR
slightly increases throughout the day and the error decreases
in the same proportion. The ANR increases throughout the
day because the television is ON, in contrast with nighttime,
in which the television has minimal usage. During the night,
even with small noise, the ANR for the television tends to be
small. For the computer, the error is clearly larger between 4
am and 7 am, in which the ANR is very small (Fig. 2). In
the remaining hours, the ANR increases and the performance
improves.

By inspecting the distribution of power consumption for
each appliance and the disaggregation performances, the
WGRU algorithm predicts appliance power for hours of
minimal usage, for instance, for the washing machine and
dishwasher, where the disaggregation performances are clearly
worse at night compared to daytime. This is captured by
the normalized MAE and impacts the association observed
between ANR and the disaggregation performance. Hence, in
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Fig. 4. ANR for the washing machine, dishwasher, television, and computer,
and SNR for house 1 for each bi-weekly period in experiment 2.

the particular case of house 1, it is safe to say that there is
a tendency for better performances when ANR increases and
vice-versa.

Considering Fig. 2, the SNR varies across the hours of the
day, with peak values between 11 am and 5 pm. However, the
SNR is insufficient to explain any variation in performance
for each appliance throughout the day. On the other hand,
although the algorithm performance for each appliance tends
to improve when ANR increases, it can be hypothesized
that noise alone is not an indicator of the complexity of a
given dataset concerning a particular appliance. Nevertheless,
it should be stressed that this experiment considered only
one household. As such, to obtain more definitive answers
regarding the relationship between ANR and performance
additional experiments should be performed with a higher
number of datasets and appliances.

Fig. 5. Total power consumption of the washing machine, dishwasher,
television and computer, and total noise power in house 1 for each bi-weekly
period in experiment 2.

VI. CONCLUSION

A. Research Implications and Potential Applications

In this paper, a metric that reports the noise proportion
in NILM datasets with respect to individual appliances was
presented to complement existing noise metrics, such as SNR.

Three experiments were conducted to apply the proposed
metric in different scenarios. The first experiment examined
various sample rates, emphasizing the need for covering
appliance activations for accurate reports. The second exper-
iment explored different data scenarios (hourly, bi-weekly,
and monthly), demonstrating the metric’s versatility beyond
using the whole dataset. In contrast to SNR, ANR provided
specific appliance-level information for each scenario. The
third experiment assessed the relationship between noise and
disaggregation performance using ANR, revealing valuable
insights at the appliance level for analyzing disaggregation
performance. If the analysis is extended to more buildings, the
proposed metric can help define NILM performance bench-
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Fig. 6. ANR for the washing machine, dishwasher, television, and computer,
and SNR for house 1 for each monthly period in experiment 2.

marks based on the possible relationship between noise and
disaggregation performance.

This measure can assist researchers in establishing noise
thresholds for satisfactory disaggregation performance in spe-
cific appliances. Hence, usage pattern identification and fault
detection can improve, with a direct impact on the reliability
and accuracy of NILM. Furthermore, ANR can aid in the im-
provement or development of NILM algorithms. Specifically,
the analysis of ANR could allow for more precise selection
of hyperparameters in the algorithms based on the appliance.
Finally, the proposed metric could also be extended to other
machine learning problems, such as Blind Source Separation
(BSS) [31]. Since NILM is a BSS problem with a single
channel, ANR could be generalized for more channels. The
proposed ANR measure is an essential addition to help deploy
NILM tools in a real-world setting.

Fig. 7. Total power consumption of the washing machine, dishwasher,
television and computer, and total noise power in house 1 for each monthly
period in experiment 2.

B. Limitations and Future Work

Although the purpose of this work is achieved, some
limitations and future work suggestions are identified. In the
metric assessment, ANR was computed using a benchmark
dataset. Further investigation with other datasets would yield
more generalizable results. Also, since many datasets only
include aggregate consumption data from buildings, analyzing
the estimation of ANR from external information, such as
usage patterns, could be valuable.

Regarding the third experiment, including more algorithms
would enhance comparisons and generalizability. In this ex-
periment, only houses that contained all four appliances were
considered; therefore, the number of dwellings considered
was small and from a specific geographical area. Large-scale
empirical studies are recommended to better understand the
impact of noise on disaggregation.
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Fig. 8. Disaggregation performance - Normalized MAE - of the WGRU
algorithm for the washing machine, dishwasher, television, and computer
appliances for each hour of the day in house 1 in experiment 3.
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