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Abstract: Efforts to enhance electric vehicle (EV) charging processes have spurred the emergence of
smart charging algorithms. However, these studies are intricate and costly, necessitating preliminary
simulations to assess EV integration into power grids. Existing solutions to this issue tend to be
limited to academia and proprietary systems. To address this, we propose a user-friendly and intuitive
simulation tool employing a decoupled and flexible architecture. This architecture, achieved through
open design and containerized microservices, streamlines maintenance, extension, and scalability.
We substantiated the validity of our solution by simulating the charging infrastructure from an H2020
Research Project. Furthermore, we integrated our solution with an external system that executes
smart charging algorithms. The proposed system yielded the desired results, enabling the project
team to evaluate both the integration and algorithms, even amidst the COVID-19 lockdown.

Keywords: smart charging; simulation; electric vehicle; case study

1. Introduction

Global warming is one of the most significant challenges facing humanity today. To ad-
dress this issue, a wide variety of measures has been implemented worldwide, encompassing
various areas, notably public campaigns and the development of greener technologies. This
work concentrates on two of the most crucial areas: energy and transportation.

One of the most prominent factors contributing to global warming is the continuous
emission of CO2 by the majority of vehicles used in our daily routines. One approach to
mitigate these emissions is to transition the transportation sector toward cleaner alterna-
tives, such as the adoption of electric vehicles (EVs) [1]. This shift has prompted the rise of
EVs, which are currently being produced and offered by manufacturers. In alignment with
this trend, governments worldwide are actively promoting the adoption of these vehicles,
offering incentives such as tax breaks or free parking.

On the other hand, despite the growth of electrical networks over the years [2], they
still struggle to keep pace with the rapid evolution of EVs [1] and are often unable to
meet the increasing demand for electric vehicles. The surging adoption of EVs places
a considerable strain on existing electrical networks, many of which are outdated and
ill-prepared for this new demand [3]. For instance, according to an OFGEM report, it is
estimated that approximately one-third of the electrical networks in the UK would require
upgrades if around 40.

Consequently, it is hypothesized that the grid could revert back to fossil fuels to
produce enough energy to address this increasing demand [4]. This obstruction takes us
back to our original problem presented in the first place (our CO2 footprint).

Traditionally, the charging process involves the plug-and-charge method, which sim-
ply charges the vehicle in an uncontrolled and uncoordinated manner whenever it needs
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charging. This approach leads to theoretical issues concerning the electric network’s ability
to meet the demand and charge EVs without overloading the network, as described in the
previous paragraph. To tackle this issue, the field of smart charging [5] introduces intelli-
gent and coordinated charging methods that take into account various factors, including
energy cost and electricity network availability. Employing a diverse range of algorithms,
these coordinated charging methods lead to a more balanced distribution of the load in
electrical networks and reduced peak loads [6,7].

1.1. Problem Statement

From a practical standpoint, studies on smart charging algorithms are feasible but
challenging; expensive; and, in some situations, potentially hazardous. This is due to
the complex management and coordination required in terms of electric power and road
transport systems [8]. Thus, to successfully analyze and predict the integration of EVs in
electrical networks, these studies are usually first conducted using simulations [8].

Data shortages pose a challenge in assessing algorithms and machine learning in
general [9]. Simulations can play a crucial role in expanding datasets and enhancing
decision making and predictions in such systems [10].

Therefore, as is common in the area of smart charging, a lack of data (or a lack of
non-noisy data) leads up to testing being performed based on the simulation of factors
such as the usage of EVs, the grid’s load, the cost of energy, and the charging of batteries in
general (for example, [11–14]).

1.2. Simulating Smart Charging Scenarios

There are simulation solutions available that fit smart charging parameters. Still, they
largely consist of either academic or proprietary solutions or limited/specific solutions
for a particular context that require a significant amount of customization effort from
researchers/practitioners for their intended context (even if the required changes are
minimal) [15,16]. Furthermore, the literature review carried out in this paper revealed
that in terms of architecture, the existing solutions are usually developed in a monolithic
way, containing a single code base, resulting in solutions that are rigid and challenging to
adjust. Besides that, technologically speaking, there are not many available frameworks
that integrate this kind of simulation while being open-source, extensible, and easy to
use [15,16], which obstructs potential reusability or customization in other contexts.

To overcome this, we propose a simulation platform that allows researchers to simulate
any set of smart charging algorithms under different conditions with enough abstraction to
fit any charging simulation context, using an open design both in terms of technologies
and architecture.

1.3. Contributions and Paper Organization

The proposed system comprises an open-source platform designed to simulate smart
charging algorithms in a versatile manner that can adapt to various contexts and accom-
modate a variable array of data models. In simpler terms, it employs modularity in both
simulation algorithms (smart charging algorithms) and simulation components (which
are defined by users and can include items such as batteries, chargers, and charging time).
Additionally, the proposed simulation system includes two other essential components: a
data server (for exposition of simulation data via a web server) and a Web client (to provide
an interactive dashboard displaying the simulation status).The solution is technically open
and easily extensible to any energy simulation context.

The remainder of this paper is organized as follows. In the next section, we present
several simulation platforms that motivated our approach. In this review, we mainly focus
on the technologies used for each of the reviewed platforms. After this review, the proposed
solution is presented in Section 3, where the solution attempts to fill the gaps and extend
the reviewed work, especially considering how open-source tools could be used to develop
it. Section 4 presents a case study in which the proposed system was evaluated within
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a smart charging pilot that was halted due to the COVID-19 pandemic. The results of
the simulation are presented and discussed in Section 5. Finally, we present the main
conclusions in the last section.

2. Related Work

The challenge of developing simulation platforms for transportation and charging has
inspired a significant body of work. In this section, we introduce the reviewed platforms
designed to simulate entire or partial smart charging scenarios. For each tool, we provide a
brief overview of its scope, strengths, weaknesses, and how it has influenced our approach.

When it comes to battery energy storage systems (BESS), the paramount objectives
are to reduce energy costs and enhance efficiency. Given the multitude of adjustable
parameters associated with storage system design, the University of Applied Sciences in
Berlin developed a system called PerMod in MATLAB [17] that enables the end user to
simulate and analyze the performance of a particular energy storage system.

Also in the context of evaluating BESS, SimSES [18] was developed. This simulation
system allows for analysis not only from the technical perspective but also from the
economic standpoint. In its initial phase, this tool was developed in MATLAB but was later
ported to open-source Python software [19], resulting in a technically modern and flexible
solution.

Focusing on the precise context of BESS and electric vehicles and with the goal of eco-
nomically evaluating EVs, the National Renewable Energy Laboratory (NREL) developed
the BLAST system [20] to predict battery responses according to battery properties (such as
degradation and thermal performance), as well as usage and historic climate data. However,
with BLAST, researchers only have access to its installer (and its binary files). The same
entity, under the more specific context of renewable energy, developed and distributed
SAM, a simulation platform [21]. It comprises a desktop application that empowers end
users to simulate renewable energy projects and analyze technoeconomic aspects, including
performance, financial metrics, and available incentives for such projects. This open-source
platform was built using C/C++. Within the same field of renewable energy, which is
characterized by the unpredictability of its sources (such as solar and wind), the German
Aerospace Center developed FreeGreenius [22]. Based on the given input (meteorological
and economic data), the tool is capable of simulating renewable power plants from an
economic point of view, taking into account investment costs and financing costs and con-
sidering a certain period. In order to simulate power electronic converters and motor drives
in general, the PSIM proprietary software (https://powersimtech.com/products/psim,
version 1.0) was developed. This tool allows for the development/modeling of custom
module boxes [23]. These custom developments enable this tool to concretely simulate and
study conventional vehicles, EVs, and hybrid electric vehicles (HEVs).

In the same context (automotive systems), the JANUS [24] simulation package was
developed by the Engineering Department of Durham University. It consists of a program
that allows the end user to evaluate the design, performance, and efficiency of vehicles.
The program was written to allow for possible extensions. To that end, its structural
approach consists of separating each vehicle component into a separate subroutine. Also
contributing to the subject of automotive systems, Texas A&M University developed a
MatLab/Simulink simulation/modeling package, V-Elph [25], to ease the analysis and
comparison of EV and HEV setups and energy management strategies. This tool allows
the end user to perform simulations based on the selected component model (including
component models designed for general and user-defined/customized use cases). G. H.
Cole proposed SIMPLEV [26] as an alternative to systems targeting vehicle simulations. It
consists of a program written in BASIC that provides the end user with the possibility of
performing parametric studies of EVs. Considering it was developed in BASIC, SIMPLEV
turns is a significantly restricted and bounded solution due to the minimal capabilities of
the adopted programming language to build it. ADVISOR [27] is another tool with similar
objectives that emerged from NREL. This tool was made publicly available, encouraging

https://powersimtech.com/products/psim
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continuous development in terms of flexibility. As ADVISOR was built in MATLAB, its
portability and versatility are hindered compared with other work reviewed in this section.

Similarly, for the analysis of hybrid electric vehicle (HEV) systems, Argonne National
Laboratory (ANL) developed the MARVEL program [28]. In the context of simulation,
MARVEL requires input data from the end user regarding the driving cycle and the
battery. However, due to its core being built in FORTRAN, it shares the same technological
limitations as the JANUS tool, making it an outdated and restrictive tool in terms of
programming capabilities.

Architecturally speaking, we have observed from the analysis presented above that the
reviewed works have adopted more closed and rigid architectures, making them difficult
to adapt to other contexts and affecting their extensibility and scalability.

Therefore, we argue that a monolithic approach is not ideal for this kind of simulator.
Instead, we believe a microservice [29] approach is more suitable, since it results in higher
levels of scalability, maintainability, and versatility (in terms of programming languages
used in the several microservices).

3. Proposed Solution

As a result of the thorough analysis of the state of the art, several points were taken into
account for the functional and technical aspects of the proposed solution. It is imperative
to clarify that the proposed solution does not attempt to make advancements in the current
state of the art concerning the enhancement of models, algorithms, use cases, or general
machine learning methodologies utilized within the simulation domain. Instead, the
principal aim of this proposal lies in the expansion of the field, with a specific focus
on augmenting attributes such as openness, configurability, extensibility, and ease of
installation. The ultimate objective is to develop a versatile tool capable of accommodating
and implementing the diverse range of simulation approaches that have been reviewed.

Many of the reviewed tools follow strict and closed design patterns. This inspired our
project to not only embrace open design patterns and approaches but also to be developed
as a fully open-source project.

Moreover, a significant number of existing tools rely on MATLAB, either partially or
exclusively, leading to proprietary and inflexible solutions. In contrast, tools like SIMses
were built in Python, resulting in more open and extensible implementations. You can find
a detailed description of our implementation in [30].

Following this approach, we chose to write our proposal in Python, providing an open
development platform built upon more versatile programming languages and libraries.
Similar to SAM, this choice enabled the creation of custom enhancements in a range of
compatible programming languages, enhancing the system’s extensibility. Additionally, we
adopted a structural approach similar to that of JANUS, where each vehicle component is
separated into distinct subroutines. This approach makes our code base easier to maintain,
read, and extend, as different researchers can work on various modules independently. It
also allows for the usage of user-defined or customized models, as demonstrated by V-Elph.

To build upon these choices, in addition to selecting Python as our programming
language, we adopted a microservice architecture. This decision brings about higher
scalability; supports easier deployments; and, most importantly, ensures versatility and
technical agnosticism regarding programming languages. Each component can be devel-
oped independently in the language that suits it best.

Lastly, one of our core considerations was the observation that most of the reviewed
work consists of desktop applications. These types of applications typically demand more
time for setup and maintenance, along with specific software and hardware requirements
for execution. In contrast, by opting for a Web-based approach, our proposed solution
ensures that researchers can easily access it from any device, with minimal to no setup
required. This not only reduces development costs but also guarantees consistency across
various systems
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3.1. Architecture

The architecture of the developed simulator consists of four main modules (simulator,
gateway, data, and Web client) separated into Docker containers. Each module runs inde-
pendently and can be rebuilt in any programming language as long as the communication
protocol is respected. An overview of the architecture is provided in Figure 1.

Figure 1. Functional diagram of the simulator showing its modules.

3.1.1. Simulator

The simulator’s core serves as a wrapper class for the main functionalities of this sys-
tem, such as initiation and stopping of the simulations, the WS message receiving/sending
process, and database export.

The core also contains other functionalities, such as exposing the external REST API
endpoints, handling the configuration of the simulation, unifying the logging process,
notifying the research team through a Slack (https://slack.com/) channel, and providing
persistent data handling through a database, among other functionalities needed for the
setup, as well as debugging of the simulation.

3.1.2. Gateway

The gateway is used to centralize the communication between the simulator and the
data models. It is implemented as a microservice encapsulated in a Docker container that
serves a set of HTTP end points, which, when called, delegate its logic to the respective data
model (via the respective RPC proxy). Afterward, the corresponding data model handles
the request and returns a response according to its business logic.

https://slack.com/
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3.1.3. Data Models

In the current version, six data models were modeled after the data collected in the
real-world deployment. Each of the models is briefly described next.

• Travel-Affluence: This model is intended to serve as a proxy for the number of trips
to be simulated each day. Regarding the travel affluence, the model consists on the
calculation of the travel affluence according to a certain hour of day as an input.

• Travel—Distance: This model acts as a proxy for trip distance in km. It was modeled
by selecting a random travel distance from the set of real travel distances recorded
during the real-world deployment of the monitoring platform.

• Travel—Duration: In the same way, the logic involved in the duration model plainly
revolves around a random selection of a travel duration from the dataset of previously
collected real travels.

• Travel—Final Battery Level: The model concerning the final battery level of a car at
the end of travel consists of a model that, based on the initial battery level and the
travel distance as input, calculates the final battery level for the car based on a linear
regression calculation.

• Charging—Duration: For the charging model, it was assumed that, if possible, vehicles
charge up to 100%.
The charging duration was modeled using a random charging duration collected from
a set of previously acquired complete charging sessions. The instantaneous power
consumption depends on the duration of the charging session and the battery state of
charge.

• Charging—Energy: The model of total energy consumed, based on progress during
the charging period (in percentage), calculates the energy used during charging.

All data models are encapsulated in microservices within individual Docker contain-
ers. As it happens for the gateway, their respective Docker images are started, and they
connect to the same RabbitMQ message broker through the Nameko framework. With the
connection set up, the data models are ready to be called up from the gateway.

3.1.4. Web Client

A Web-based client application was developed to provide researchers with an ac-
cessible means of interacting with the simulation. Furthermore, the Web client facilitates
real-time visualization of the status of each simulated component. This tool enables various
members of the research team to remotely configure and analyze the simulation’s status
without requiring direct configuration of the distinct containers and without necessitating
any specialized skill sets. Within this Web client, researchers can configure various parame-
ters of the simulation, including but not limited to the number of vehicles, simulation steps,
and time intervals between steps. Configuration is accomplished by editing a config file
(see Listing 1), where all those parameters are defined. In practice, this allows researchers
to define, for example, the duration of the simulation or the number of points generated
per cycle, or define URLs needed for external integration. The Web client then interacts
with the simulator and consumes its data. Like all the components described above, the
Web client is also contained withing a independent Docker image. The configuration used
for our case study is presented below. The user can also visualize past simulation days, as
presented in Figure 2. It is also possible to visualize the state of different variables of the
simulation such as the SoC and consumption of the scooters (see Figure 3).
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Figure 2. Simulation visualization in the Web client, showing a list with the different performed
simulations.

Figure 3. Simulation visualization in the Web client, showing a list with the status of simulated
scooters. A similar view is also available to analyze the status of each charging point.

Listing 1. Configuration file of the Simulator as used in the case study.

{
" number_of_cars " : 10 ,
" number_of_charging_plugs " : 4 ,
" sim_sampling_rate " : 900000 ,
" t r a v e l _ a f f l u e n c e _ m u l t i p l i e r " : 1 ,
" minutes_per_sim_step " : 15 ,
" number_of_steps " : 96 ,
" gateway_request_base_url " : " ht tp :// cont_energysim_gateway : 8 0 0 0 / { } " ,
" enable_debug_mode " : f a l s e ,
" webhook_url " : " h t tps :// hooks . s l a c k . com/ s e r v i c e s /XXXXXXXXXX"

}

3.2. Development Tools

In terms of the development itself, as mentioned before, its core and main mod-
ules were be built in Python (https://www.python.org), as its containerization was ac-

https://www.python.org
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complished using Docker (https://www.docker.com) and the whole scripting side was
developed using Makefiles (https://www.gnu.org/software/make).

Furthermore, SQLObjects (http://www.sqlobject.org) were be used to handle the
connection between the Python objects and the database through object-relational mapping
classes. For the implementation of the models themselves, the following frameworks
were used: TensorFlow (https://www.tensorflow.org) for their development and training,
Nameko (https://nameko.readthedocs.io) for the construction of the microservices, and
RabbitMQ (https://www.rabbitmq.com) as a message broker for the microservices.

The WebSockets (https://websockets.readthedocs.io) library was used to serve as
a WS between the simulator and its web client. In addition, the solution uses Flask
(https://flask.palletsprojects.com) for setup of the external REST API, serving as the Web
client’s static files. Regarding the web client, OpenUI5 (https://openui5.org/) was used as
the front-end UI framework.

4. Evaluation and Analysis

As a case study for the simulation platform, we present how this platform was used to
simulate the data from a smart charging pilot within the scope of a Horizon 2020 project.
An EV pilot was carried out by a company that provides tourist tours on electric scooters
(commonly known as Tuks). The goal of this pilot was to implement smart charging
techniques in small vehicles with low energy requirements (e.g., scooters). A detailed
presentation of the pilot scope and hardware is provided in [31]. However, the pilot was
completely halted due to the COVID-19 pandemic. When the lockdown happened, most
of the monitoring hardware had been running for approximately 2 years, and the smart
charging intervention had just started. This left the team without an adequate approach
to evaluate the whole pilot, especially the charging algorithms and communication with
the third party responsible for implementing them. As an alternative evaluation, it was
decided to model the entire pilot within the proposed platform. This case study allowed
us to evaluate the proposed system considering several aspects. First, the installability of
the simulator was assessed by installing and configuring the system on a server. Secondly,
it allowed us to test the adaptability of the simulator to a specific use case. Finally, we
were also able to evaluate the integration of the simulator with third-party services. This
evaluation is crucial, since it can also help to identify whether, when used in real-life
scenarios, the implemented solution fulfills the objectives set out in its proposal. The
configuration used during this period is presented in Listing 1.

4.1. Integration with a Third-Party Route Management Algorithm

In this particular use case, the platform had to interact with a company that, within
the scope of this paper, is referred to as Smart-Charging-Company (SMC). SMC offers a
series of route management services. Within the scope of this research project, SMC was
responsible for generating smart charging schedules using a proprietary algorithm that
attempts to maximize renewables usage at the whole-island level. SMC’s algorithm was
modeled using a service that provides real-time local energy production by quota (e.g.,
thermal, wind, and hydro). This service is updated every 15 min, and the algorithm also
uses real-time weather forecasts gathered from an online source. The output from the smart
charging service produces commands with a granularity of 15 min.This partner originally
had access to real data gathered from the pilot. However, once the COVID-19 restrictions
were put in place, there were no data for SMC to use. A proposed approach involved the
partner’s route optimization planning production system consuming the REST API routes
available in the simulator. Afterward, SMC could also act upon the simulation through the
REST API (see Figure 4). A sample request is presented in Listing 2.

In the original implementation, SMC was expecting to act upon the charging loads in
real time. With this in mind, the simulator was set up to run in simulated real time. Each
cycle of simulation lasts 24 h, and the simulation runs in steps of 15 min (see Listing 1 for
the full configuration used in the case study).

https://www.docker.com
https://www.gnu.org/software/make
http://www.sqlobject.org
https://www.tensorflow.org
https://nameko.readthedocs.io
https://www.rabbitmq.com
https://websockets.readthedocs.io
https://flask.palletsprojects.com
https://openui5.org/
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It is imperative to state that the objective of this study was not the development or
evaluation of smart charging algorithms. While SMC algorithms utilize data from the site
and the simulation, it is important to note that the algorithm was entirely developed in
house. This case study serves to illustrate how the simulation can interact with a completely
separate algorithm, thanks to its open design.

Listing 2. Sample smart-charging command received by the simulator in this example plug 4 gets
disabled.

05/Sep/2021 1 0 : 4 5 : 0 0 "GET /plugs/4/ disabled HTTP/1 .10"

Figure 4. Overall representation of the communication between the Simulator and the SMC for the
case study.

4.2. Modeling the Solution

Although our contribution is not centered on a specific case study, the process outlined
below demonstrates how to integrate data from various sources into the proposed platform.

The models presented below were primarily built using a sample of baseline data,
including real consumption, travel patterns, and affluence data collected over a two-year
period prior to this study. In practical terms, the process is outlined as follows:

1. Extraction of the data from the data source;
2. Processing of the data;
3. Creation of the formulas of the mathematical models.

For the modeled case study, the the following entities were considered:

• Travel;
• Battery consumption;
• Charging;
• Affluence.

The first data model encompasses information related to the distances traveled during
scooter routes on tours. This model was constructed using all previous travel data collected
in the pilot study. It calculates the average travel distance and the standard deviation of the
distance. Each generated travel is calculated using the average, with random values added
within the standard deviation.

For the Battery consumption model, the average and standard deviation of scooter
battery consumption per kilometer were calculated based on baseline data measured before
the intervention. This model calculates battery consumption for a given travel by first
generating a value of consumption per kilometer, which is the average consumption per
kilometer plus a random value within its standard deviation. This value is then multiplied
by the distance (generated from the travel model), providing the battery consumption for
a given travel. The final battery state of charge (SoC) is determined by subtracting this
consumption from the initial SoC value.
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The charging duration model follows a similar approach. The average and standard
deviation of charging duration and charging peak values were calculated. Using this
information, the model generates the charging duration by adding the average value to
a random value within its standard deviation. The generation of charging peak values
follows the same method.

The data models presented here serve as a basic demonstration of the process involved
in integrating and modeling data from external sources into the proposed platform. This
illustrates the flexibility and versatility of our solution, which allows for the seamless
incorporation of data from various sources.

Simulation Report

During the evaluation, the simulator completed 61 full cycles of days (31 days for
August and 30 for September). Figure 5 displays various samples of affluence and trip
distance. Concerning affluence, it is evident that the simulation tends to generate higher
demand for scooters in the morning. In the right-hand graph, we can observe the wide
range of trips that the simulator can generate. The simulation followed the models briefly
presented earlier. For example, Figure 6 illustrates the relationship between distance
traveled and battery consumption for fifteen random trips generated during the simulation.
Regarding the integration with SMC, the simulation received 1208 charging commands and
generated more than 58,000 consumption points. After one week of testing, the simulation
ran continuously without any issues. The simulation started on the 1st of August 2021
and ended on the 30th of September. During the month of August, the simulation did not
receive any smart charging commands from SMC. Smart charging was introduced for the
whole month of September.

Figure 5. Affluence and travels samples generated during some of the simulation runs.

Figure 6. Representation of the relation between the distance and battery consumption of fifteen
random trips generated during the simulation.

As mentioned above, during the simulation, there were 1208 instances of smart charg-
ing events. These are, simply put, ON or OFF commands directed at specific charging
points forwarded by SMC based on the output of their algorithm. Listing 2 shows an
example of a received command from SMC.
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In simpler terms, there were more than 300 charging hours that were shifted according
to the weather forecast and other inputs used by SMC. The commands significantly affected
how charging occurred during the period of the simulation.

Figure 7 presents how the battery SOC of two scooters evolved during a run of the
simulation with smart charging. The same comparison is presented in Figure 8; again, the
difference between the charging pattern at the charging point is quite visible. Consumption
occurred in shorter bursts.

In general, the data show that there were fewer charging periods when smart charging
was active: 612 compared to 655 without smart-charging. On the other hand, charging
lasted, on average, 10 min longer under smart charging. This observation can be explained
by the fact that actuation cut the power, which may have resulted in a longer charging
period during smart charging. These were periods during which the algorithm decided to
turn off the power from the charging points, delaying or postponing charging according
to its inputs, again with a focus on renewable energy availability. However, in general,
the smart charging intervention did not affect the total energy usage, nor did it affect
the travels simulated by the platform. During the month of August, there was a total of
1543 simulated travels, and for September, the platform simulated 1433 travels. The travels
had an average length of 12.3 km (SD = 3.5 km) in August and 12.5 km (SD = 3.4 km) in
September. Regarding energy consumption, each travel consumed an average of 4.6 kWh
of energy in both the months of August (SD = 3.5) and September (SD = 3.4). Lastly,
on average, each simulated day consumed an 91.6 kWh (SD = 14.2kWh) in August and
85.8 kWh (SD = 5.4) in September.

Figure 7. Battery state of charge for two scooters during a simulation run. Each line represents a
different scooter present in the simulation.

Figure 8. Consumption of one of the charging points during a simulation run with and without smart
charging.

5. Discussion

The proposed solution entails an open-source and easily extendable simulator for EV
charging data, which relies on models of different factors impacting consumption, such
as battery capacity and usage patterns. The research team identified a gap in the state of
the art for a user-friendly system that could be conveniently extended, developed using
open-source tools, and accessible via a web client. In summary, we believe that the system
successfully fulfilled its intended purpose. It enabled the modeling of a specific case study,
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allowing researchers to continue experimenting with smart charging algorithms, even
during periods when data were scarce.

Development of a Smart Charging Simulator

Unlike existing tools, such as PerMod [17], SA [21], JANUS [24], V-Elph [25], SIM-
PLEV [26], ADVISOR [27], and MARVEL [28] (and similarly to SIMSes [19]), this solution
is built on Python, a more developer-friendly programming language that results in code
that is easier to read, simpler, and flexible.

In the same way, in contrast to tools like PerMod [17], FreeGreenius [22], PSIM [23],
JANUS [24], V-Elph [25], BLAST [20], SIMPLEV [26], and MARVEL [28] (and as adopted in
SIMSes [19] and ADVISOR [27]), this solution was made to be open-source and available
to the public community. Motivated by SAM [21], PSIM [23], JANUS [24], V-Elph [25],
and ADVISOR [27], this simulator adopts an open architecture and used open design ap-
proaches, making it more favorable for future enhancements/modifications. The addition
of microservices also accomplishes this, providing increased scalability of the solution,
making the deployment process easier, largely reducing downtime, and making it sim-
pler to maintain/extend. This enables the implementation of each microservice in any
programming language. In situations in which the simulator needs another data model,
the following are needed: the creation of a microservice and its implementation (with the
model), including the respective RPC proxy in the gateway, as well as a corresponding
HTTP call in the simulator. Consequently, this results in a decoupled and flexible system
for maintenance and development. The User interface of the proposed system was highly
motivated by SIMSes [19], SAM [21], FreeGreenius [22], PSIM [23], JANUS [24], V-Elph [25],
BLAT [20], SIMPLEV [26], and ADVISOR [27] (while not present in PerMod [17] and MAR-
VEL [28]). It also provides a visual representation of the simulated data in order to provide
an easy and hands-on way to analyze the same data.

However, as opposed to all the related work reviewed herein, the proposed solution in-
cludes a Web client. This client provides researchers with a solution within their reach, with
no setup involved and no device specificity, bringing more practicality and convenience.
In addition, with this Web approach, the simulation results can be consumed by other
researchers. Moreover, the UI allows the end users to start/stop simulations, configure the
simulator, and browse through the simulation data in real time. This feature also allowed
all the researchers from the SMILE research project to monitor the state of the simulation in
real time and to visualize passed simulated days.

6. Conclusions

In summary, owing to the necessity of improving the charging process of EVs, the
field of smart charging has emerged. However, the studies revolving around this field are
complex and could be expensive and risky. Consequently, this leads to a need for prior
simulations to analyze/predict the integration of EVs in electrical networks. Some simula-
tors are already available, yet they consist of either academic, proprietary, or limited/rigid
solutions. Therefore, we have presented a solution that provides a handy and intuitive tool
for researchers to simulate scenarios backed up by a simulation system with a decoupled
architecture. Such an architecture is materialized by adopting open design approaches and
the concept of containerized microservices, making the process of maintaining/extending
easier, in addition to providing a high level of scalability. When evaluating this solution,
we can argue that it fulfilled its objectives of solving the problem the research team faced,
in addition to contributing to the field with an open platform to test smart charging algo-
rithms. Furthermore, the solution ran on a production system while also being consumed
externally by a third-party partner, which corroborates the solution’s relevance. Given the
size of the baseline sample, more advanced models could have been built; however, this
was not the purpose of this study. Furthermore, considering the solution’s flexibility, more
advanced models could have been easily integrated.

The developed platform is available in various Git repositories [32].
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Future Work

There are plenty of improvements that could be implemented in complex platforms
such as that proposed herein, for instance, the development of a travel route renderer and
additional data models and integration of the simulator with its gateway and Web client.
Another potential improvement is the refinement of the data models to incorporate the
full potential of TensorFlow models, utilizing fully self-learning models to advance the
simulation process. By incorporating the full potential of TensorFlow, these data models
can be sufficiently advanced to be used for other purposes besides this simulator.

However, given the current state of the platform, a more exhaustive evaluation is
required further test its flexibility, including new models, interaction with new data sources,
or the inclusion of real hardware in the loop, since the simulator can be configured to run
in real time.
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