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A B S T R A C T

Python Energy Communities (PyECOM) is a tool designed to facilitate the research into Energy Communities
(EC) through the ability to create, simulate and test various EC settings. Key components of EC functioning
are implemented and provide a flexible basis for the integration of new components. Optimization algorithms
from libraries such as Pymoo can be accessed and are facilitated through the use of the proposed data model.
In future versions, PyECOM will also feature Reinforcement Learning as a method available to the users.
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. Motivation and significance

The integration of Renewable Energy Sources (RES), coupled with
he emergence of Energy Communities (ECs), has brought new chal-
enges to the way resources are used [1,2]. Scheduling of energy
esources on ECs can be challenging due to the various technologies
ow integrated with it [3]. Along with technological developments,
ew interactions with the grid and business models are now con-
idered [4]. The latter requires systems that can correctly estimate
esource availability and how much energy will be needed for executing
ransactions [5,6].

Previous research in this field has tackled the problem of resource
tilization in ECs, from focusing on single assets of a community such
s storage [7,8] to Electric Vehicles (EVs) [9,10]. Several works have
lso tackled the optimization of ECs as a whole [11–13].

Optimization of ECs resources requires an understanding of how to
ake the best use of all of them, considering their technical character-

stics. To this end, different strategies have been proposed, including

∗ Corresponding author at: Instituto Superior Técnico-IST, Universidade de Lisboa, Portugal.
E-mail address: eduardo.c.gomes@tecnico.ulisboa.pt (Eduardo Gomes).

Linear Programming (LP) [14], Mixed-Integer Linear Programming
(MILP) [15,16], Metaheuristics (MH) [12,17,18] and Machine Learning
(ML) approaches [19].

However, designing an EC an optimizing its operation is not a
straightforward process, requiring code proficiency [20,21], which cre-
ates barriers to developing and deploying solutions. This work aims
to offer a tool to facilitate the implementation pipeline and provide
a user-friendly end-to-end framework. Our framework circumvents the
high-level coding barriers required for solution handling and provides
simple commands that are easily interpreted and implemented.

To this end, this paper proposes Python Energy Community
(PyECOM), a Python package that attempts to streamline the en-
tirety of the process of optimizing an EC, from the data loading
to the extraction and analysis of the optimization results. PyECOM
allows loading EC scenarios built in multiple formats and includes
a data engineering component to prepare the data for usage and a
constraint-based solution-fixing mechanism intended for metaheuristics
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
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Table 1
Available Metrics.

Metric Description

Self Consumption Measure of production consumed internally.
Total Produced Sum of total produced power.
Import and Export Balance Indication of the import and export required.

and neural network generated values. PyECOM is available on GitHub
as an open-source repository in [22].

The remainder of this paper is organized as follows: Section 2 pro-
vides an in-depth overview of the tool and the functionality provided,
presenting a visual representation of the pipeline and how the PyECOM
was constructed. Section 3 provides a use case of the proposed software,
with examples of usage, including a benchmark between two well-
established MHs. Section 4 discusses the proposed work’s potential
impact and implications, including the comparison with previously
proposed tools. Finally, Section 5 provides some remarks on PyECOM
and future research directions.

2. Software description

PyECOM is a Python library that offers a unified approach to study-
ing Energy Communities, providing users with data processing, opti-
mization, and result analysis capabilities. It consolidates the manage-
ment of ECs by utilizing a data model that streamlines the integration
of components. The proposed software interfaces with other libraries
such, as Pymoo [23], making use of its implemented metaheuris-
tics. PyECOM also incorporates a result analysis component, available
through the implementation of relevant metrics in the context of ECs,
as listed in Table 1.

2.1. Software architecture

PyECOM is comprised by seven main components: algorithms, met-
rics, parsers, repairs, resources, markets, and scenes. Each of these
components was defined using interfaces to maximize code reuse. By
using said components, an Energy Community test scenario can be
generated with the desired inputs, algorithms and evaluated according
to an user defined metrics.
Data Parsing — PyECOM provides an abstract BaseParser class that
can be extended to support multiple data formats and inputs. The parser
is responsible for of accurately reading necessary data and creating the
appropriate resources for the correct functioning of the system.
Data Model — The input/parsed data is preserved in the form of
a Resource, storing the information required for the functioning of
the community, such as cost values and forecasts. Depending on the
resource analyzed, a typical resource used for optimization purposes
possesses a value and its cost (can be over a time period), and a lower
and upper bound accepted. Basic operations for the resource instances
were defined, such as sum and multiplication, as to facilitate the imple-
mentation process. Should a resource require additional information, a
class can be created that extends the existing BaseResource or an-
other class that extends from it. Taking advantage of this formulation,
PyECOM provides a subclass for some resources that contemplate the
use of probabilistic methods, accepting lower, and upper confidence
bounds.
Optimization — The algorithmic component of the tool, especially
the metaheuristics (MH), relies on the Pymoo package [23], which
implements several MH algorithms and allows custom solution fix-
ing. The definition of custom algorithms is also supported, requir-
ing user and coding expertise. The provided BaseOptimizer pro-
vides the main directives for optimization algorithms, while its ex-
tensions aim to facilitate the use of several algorithms such as Arti-
ficial Neural Networks (OptimizerNeuralNet) and mentioned MH
(OptimizerMetaheuristic).
2

4

Markets — A compilation of entities that make up the interactions
of a market. It is, at a base level, comprised of items, participants,
transactions, transaction handler, pricing system, and the market itself.
When defining a market, it is required to define the pricing system,
responsible for managing the evolution of participant and item interac-
tions, as well as the transaction handling system, used for certifying
transaction viability. This part of PyECOM allows resource trading
between agents of a simulation.
Analysis — PyECOM is capable of providing a result analysis compo-
nent. With user inputs, it is possible to analyze particular aspects of
the specified EC, such as self-consumption, and self-sufficiency. The
CommunityMetrics class implements the metrics listed in Table 1,
while BaseMetric defines the metric general behavior and facilitates
unction calls.

1 # Imports
2 from src.parsers import HMParser
3 from src.repairs import HMRepairPymoo
4 from src.scenes import HMProblemPymoo
5 from src.metrics import CommunityMetrics
6

7 import numpy as np
8 import pandas as pd
9 import matplotlib.pyplot as plt
0

1 # Ignore the warnings (only demonstration
purposes!)

2 import warnings
3 warnings.filterwarnings( " ignore " )
4

5 # Data parsing
6 data = HMParser(file_path=’data/EC_V4.xlsx’,

ec_id=1)
7 data.parse()
8

9 # Pymoo imports for using DE
0 from pymoo.algorithms.soo.nonconvex.de import

DE
1 from pymoo.operators.sampling.lhs import LHS
2 from pymoo.optimize import minimize
3 from pymoo.termination.default import

DefaultSingleObjectiveTermination
4

5 # Instantiate the DE algorithm
6 algorithm = DE(pop_size=30,
7 sampling=LHS(),
8 variant= " DE/rand/1/bin " ,
9 CR=0.3,
0 dither= " vector " ,
1 jitter=False,
2 repair=HMRepairPymoo(data=data

))
3

4

5 # Set the termination criteria
6 termination =

DefaultSingleObjectiveTermination(xtol=1e
-8,

7 cvtol=1e-6, ftol=1e
-6, period=1000,

8 n_max_gen=2e3,
n_max_evals=5e9)

9

0 # Instantiate the problem
1 customProblem = HMProblemPymoo(data=data)
2

3 # Run the optimization
4 temp_res = minimize(customProblem ,
5 algorithm ,
6 termination=termination ,
7 save_history=True,
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8 verbose=True)

Listing 1: Pymoo integration example

Scene — A Scene plays the role of an aggregator, where all the parts of
the package come together to form a pipeline. The Scenes are at least
comprised by the components of the Community and should handle the
calls to the individual parts. An example of a Scene implementation
can be idealized as loading and parsing the data to resources, passing
the resources to an algorithm, and analyzing the results with proposed
metrics, making use of the established directives of the BaseScene
class.

2.2. Software functionalities

PyECOM facilitates the study of Energy Communities, providing
a centralized end-to-end pipeline that incorporates data loading and
organization, optimization and result analysis. Through the proposed
data model, PyECOM aims to facilitate resource integration, provid-
ing implementations for resources such as generators, loads, storage
solutions and electric vehicles.

PyECOM provides a parser implemented for an example Excel file
that contains information of a sample EC. Said file is composed of
nine spreadsheets — general information, network, peers, load profiles,
generator profiles, available storage, electric vehicles, and additional
generator type and contract details. General Information contains infor-
mation regarding the simulation settings, such as Simulation Periods,
Periods duration (min). Additionally, it contains information on max-
imum import and exports, as well as the grid’s energy buy and sell
prices. The Network Information sheet contains data pertaining to the
physical grid and connections among the several resources, and was
not considered in this stage. Peers’ sheet holds data regarding the peers
participating on the simulation, presenting information on the buy and
sell prices of the individual resources. The Load and Generator sheets
contain information on the forecasting values of the components, upper
limits, owner and type of contract. Storage and Charging Station sheets
provide specifications of battery solutions and charging stations used in
the simulation, including maximum capacity, charge and discharge lim-
its and efficiencies, complemented by the costs of charge and discharge
costs. Finally, the Electric Vehicles’ sheet considers information on the
scheduling of each EV use, as well as information regarding each EV
battery. New users can use this file as a starting point reference, coupled
with its dedicated README page that contains description, examples on
how to add resources and events, and current limitations.

To facilitate the process of studying ECs, a parser for PROCSIM
was also implemented. PROCSIM is a Python package that allows the
creation of Energy Community datasets, more specifically demand and
generation at applicance-level granularity [21]. It was developed with
the aim of providing a simple and reliable way of creating datasets
that can be used for optimization and scheduling, as well as testing
control strategies on particular resources such as energy storage system
technologies.

PyECOM provides an implementation of the HyDE-DF algorithm, as
per [24]. We have opted against the implementation of optimization
functions, as these should be written considering the problem at hand
and the objectives of the user.

3. Illustrative example

This section provides an example use of PyECOM, for benchmarking
two single-objective metaheuristics readily available in Pymoo: Differ-
ential Evolution (DE) [25], and Genetic Algorithm (GA) [26]. The Excel
data source used in this example can be found in the tool’s repository.

The Energy Community considered in this example has information
over a 24-hour period at an hourly resolution, composed of Gener-
ators, Loads, Profiles, Storage options, Charging Stations, main grid
imports/exports, and Electric Vehicles. Complementary information
3

is also included in the Excel file, such as indicators of whether the
Generators are renewable or not, vehicle trip schedules and load types.
The code for the optimization process can be found in Listing 1. The
purposed of the presented code is the generation of an optimal resource
usage, through the minimization of community’s costs, defined in the
HMProblemPymoo class. having as purpose generating an optimal
24 h schedule of resource usage.

For completion, we provide a visualization of the results achieved
by both algorithms over 2000 iterations, using the package mat-
plotlib. Fig. 1 allows the visualization of the solution provided,
separated in terms of consumption and production, to better distinguish
the impact of each individual component. No modifications were made
to the algorithms used.

4. Impact

Similarly to the various definitions of an Energy Community in
the literature [27], there are also multiple approaches to tackle the
optimization of ECs resources [20]. This can be extended to the many
research directions related to ECs, such as proposing and exploring
algorithms [28] and policymaking [27,29,30]. Although EC software
implementations have emerged in other related works [31,32], and
other related areas such as energy in buildings [33] and grid [34], the
overall landscape of the energy sector suffers from the availability of
open-source tools [35,36].

PyECOM aims to provide an open-source, centralized and unified
approach to Energy Community analysis in a way that users – i.e. re-
searchers and system planners – can interact with and facilitate re-
search and deployment of solutions [20,35]. One of PyECOM’s main
contribution lies in its facilitation of research and solution deployment
within the EC domain. Through its design and functionality implemen-
tations, PyECOM allows researchers and system planners to address
interactions with growing energy data. By streamlining the process,
it not only offers enhanced efficiency to proficient developers, but
also facilitates the interaction to less experienced audiences. Example
notebooks can be found in the tool’s repository, providing sample code
for running scheduling tasks, and market simulations. An early version
of this tool was utilized for benchmarking of HyDE-DF against a MILP
baseline, on a similar use case [37].

Furthermore, by presenting a standardized methodology for EC
analysis, PyECOM addresses a crucial concern in the realm of repro-
ducibility and transparency, promoting consistent practices across the
field. This unified approach not only ensures that results can be easily
reproduced, but also facilitates the comparison of different approaches,
and allow sharing of methodologies among the research community.
The extensive design of PyECOM positions it as a tool capable of
accommodating emerging algorithms and strategies. The integration
of Reinforcement Learning as an optimization method is planned for
future updates, further solidifying PyECOM’s capabilities and potential
adoption.

5. Conclusions

This work presented PyECOM, a tool intended to streamline and
standardize the process of creating, deploying, and evaluating Energy
Community operations. Our tool was designed to be flexible, allow
users to design Energy Communities in the desired configuration, and
study the behavior of different optimization strategies facilitated by
the use of provided metrics. Furthermore, some implementations, such
as HyDE-DF, are already part of the tool and can be used out of
the box. PyECOM can be further optimized and extended to suit the
needs of the user. Reinforcement Learning approaches are currently
being implemented, taking advantage of the established data modeling.
More methods and algorithms will be considered in future versions,

furthering the capabilities of the proposed tool.



SoftwareX 24 (2023) 101580Eduardo Gomes et al.
Fig. 1. Consumption and Production groups of benchmarked algorithms.
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