
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 1

On the Potential of Tertiary Espresso Machines to
Provide Frequency Containment Reserves Services

Mikolaj Krutnik, Andressa Pedro, Van Malcolm Yadack, Hugo Morais, Senior Member, IEEE, and Lucas Pereira
Member, IEEE,

Abstract—The increase of renewables in the electricity mix is
changing how power systems operate and adding new players
to the energy markets. In a very short time, it is expected
that aggregators can provide balancing services that leverage
the flexibility of small and medium-sized consumers. This paper
presents a study that assesses the potential of using professional
espresso machines to provide Demand-Side Flexibility (DSF)
services and, more concretely, Frequency Containment Reserves
(FCR). The proposed methodology takes advantage of the coffee
and steam boiler components of the coffee machine to identify
opportunities to reduce the electricity demand, hence providing
demand-side flexibility. The proposed methodology is evaluated
using synthetic data generated from a dataset initially collected
from an original professional espresso coffee machine during its
daily operation. The results show that for a group of 100 coffee
machines, the disposable power through the day would vary from
33 kW in the nighttime to 42 kW between 10 AM and 6 PM.
The results also show that a minimum of 10 coffee machines
are necessary to establish a non-zero disposable power and that
after about 30 coffee machines are aggregated, the achievable
disposable power becomes nearly linear.

Index Terms—Demand-Side Flexibility, Frequency Contain-
ment Reserves, Tertiary Espresso Machines, Demand Prediction

I. INTRODUCTION

The impact that climate change and global warming have
on human existence occupies the attention of several scientists
around the world. It is estimated that human activities have
been responsible for the increase of global temperature by
around 1◦C degree above the pre-industrial level and are likely
to cause further growth of global warming to 1.5◦C within
the next three decades [1]. To mitigate the adverse effects
of global warming, the European Union (EU) prepared its
climate policy. Among other measures, the EU emphasizes
the importance of energy efficiency, setting an ambitious goal
of 32.5% improvement up to 2030 [2].

To fulfill this commitment, various actions were taken,
including introducing an eco-design and labeling policy, which
supports low-energy solutions for a broad spectrum of indus-
tries and products. The EU eco-design and labeling policy,
based on Directive 2009/125/EC [3], creates a framework for
compulsory environmental requirements for 31 selected groups
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of products within the EU, including energy-using devices as
well as other energy-related products.

The methodology for implementing the eco-design and
labeling policy is described in the Eco-design Working Plan
(EWP), currently, in version 2022-2024 [4]. The previous
working plan study analyzed the tertiary hot beverage equip-
ment, including espresso coffee machines. The evaluated prod-
ucts were free-standing hot vending machines, table-top full
automatic machines, and porta-filter espresso machines. The
estimated energy savings for the three products group was up
to 11PJ per year in 2030. While these savings were below the
pre-established threshold, the group was recommended to be
included because Europe is the leading market, and half of the
existing coffee machines are tertiary1. Furthermore, in many
Member States, there has been an increase in coffee shops
focusing on high-quality coffee [4].

However, one crucial aspect to consider is that these works
focus mainly on the potential for reducing energy demand
(e.g., setting power limits to appliances in off, standby, or
networked mode [5]), leaving out relevant aspects such as
the possibility of actively participating in electricity markets
through the provision of Demand-Side Flexibility (DSF) ser-
vices via an aggregator or an energy community as laid out in
the recent reform of the European energy market design [6].

In this context, tertiary espresso machines offer an exciting
opportunity to introduce a new player to the electricity market
for two main reasons. First, they have two internal boilers
to manage heating cycles that can be controlled without
compromising the quality of the brewed coffees. For example,
an injection of power into the grid from the perspective of a
grid operator is achieved by the asset by reducing its power
consumption in a given instant [7]. Second, the considerable
availability of such devices represents a unique opportunity for
independent aggregators that act on behalf of small consumers
in the electricity markets. For example, in Europe alone, the
stock of tertiary espresso machines is estimated to be above
1.5 million units [7], [8].

Against this background, this paper studies the potential
of tertiary espresso machines to participate in DSF services,
particularly Frequency Containment Reserve (FCR). To state
more precisely, FCR was selected for three main reasons.
First, the short duration of the service (in the order of a few
minutes) [9] since it is more adequate to avoid drastic changes
in the temperature of boilers. Second, the expectation of higher

1https://www.grandviewresearch.com/industry-analysis/coffee-machine-
market

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2023.3323823

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on November 08,2023 at 10:25:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2

profits for small players [10]. And finally, the recent efforts
towards developing markets and establishing prequalification
processes for such services [11].

To the best of our knowledge, this is the first work that
addresses this topic. This contrasts with the case of domestic
appliances, which have been studied in detail regarding their
potential for providing DSF services, e.g., [12], [13].

This paper is organized as follows: Section II presents the
background and related works. The dataset used in this work
and the proposed methods are presented in Section III. The
main results of this work are presented and discussed in
Section IV. Finally, the conclusions, limitations, and future
work directions are presented in Section V.

II. BACKGROUND AND RELATED WORKS

A. Balancing Services

Due to the physical characteristics of electricity transmis-
sion, i.e., a constant need for balance between consumption
and production, it is relevant for the grid’s security to provide
a range of ancillary services. This includes the balancing
services, which, based on EU guidelines on electricity balanc-
ing [14], consist of capacity and energy services that enable
continuous maintenance of the system frequency within a
predefined stability range.

The typical behavior of a commercial espresso machine con-
sists of relatively significant power changes when extra heat
is necessary to preserve the boiler’s temperature or produce
hot water and steam flow. Hence, espresso machines are more
adequate for providing reserve services, as these services have
a relatively short duration and require fast activation. There are
currently four different types of reserves: 1) Frequency Con-
tainment Reserve (FCR), 2) Automatic Frequency Restoration
Reserves (aFRR), 3) Manual Frequency Restoration Reserves
(mFRR), and 4) Restoration Reserve (RR).

The above categorization is mainly based on their actual
difference in the duration of delivery as well as the response
time. Whenever the grid frequency has a drop or a spike,
FCR is automatically activated (within a maximum 30-second
period). Stabilizing the grid using FCR involves the coopera-
tion of every Transmission System Operator (TSO) within the
synchronous area. Next, after a few minutes, the frequency
restoration process takes place. It includes automatic activation
of Frequency Restoration Reserve (aFRR), whereas the launch
of manual frequency restoration reserves (mFRR) depends on
a direct request from the TSO. The purpose of FRR is to
restore the nominal value of the grid frequency. The last step,
which supports or replaces FRR, is activating the restoration
reserve (RR). RR is usually switched on after 15 minutes, and
participation in the service is not considered mandatory in the
EU (however, the system should provide such a service).

The graphical representation of the reserve functionality is
depicted in Fig. 1. According to the diagram, the general
framework of load-frequency control consists of three main
phases. Initially, after the frequency disturbance occurs, the
joint action of FCR is activated for the whole synchronous
area. The process starts almost immediately when a dispro-
portion between production and electricity demand occurs.

Consequently, the grid frequency is stabilized. If the FCR is
insufficient, it is then replaced by FRR, restoring frequency to
a given setpoint value. After that, RR supports or replaces the
FRR for further grid stabilization.

In short, it can be concluded that coffee machines can
be most suitable for FCR services mainly due to the much
shorter duration of the service that will not drastically change
the thermodynamic parameters of boilers. Consequently, the
quality of the service (e.g., waiting time to reach the required
temperatures) will be scarcely influenced, or, at least, the
impact will be lower than in the case of FRR or RR [7].

Fig. 1: Reserve activation structure as an answer for frequency
drop (red line) - ENTSO-E [9].

B. DSF Potential of Individual Appliances

To the best of our knowledge, no published works have
looked at espresso machines in the context of DSF. Instead,
research on this topic gained traction at the domestic level
(e.g., [15], [12], [16], [13]), with exciting preliminary results
than can potentially be replicated to espresso machines and
other commercial devices. In this regard, devices such as Air
Conditioners (ACs), clothes washers and dryers, and water
heaters receive the most attention due to their high energy
consumption and technical feasibility since a thermostat con-
trols them. Most data-driven models rely on fitting appli-
ance consumption profiles to different flexibility scenarios,
including the possibility of changing the power levels during
the appliance operation and for deferring or anticipating the
start of appliance usage [12], [16]. Other data-driven methods
focus on identifying repeating inter-day and intra-day patterns
for energy distribution and device operation, as the existence
of peaks and off-peak periods for some devices shows the
potential to shift their activation time [15], [13].

Finally, it is also relevant to refer to some works that
look at espresso machines from different but complementary
perspectives [8], [17], [18], [19], [20]. For example, [17]
studied the potential energy savings for espresso machines
and concluded that it is possible to reduce their energy
demand between 10% and 40% depending on the type of
machine. In [8], the authors estimated the stock size of tertiary
espresso machines in Europe, reaching a number above 1.5
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million units. Finally, in [19], the authors report on recent
efforts to produce more sustainable coffee machines, focusing
on designing components that can be easily disassembled,
recycled, and re-manufactured.

Ultimately, while not directly related to DSF, these works
are still very relevant to successfully implementing such ser-
vices. For instance, the size of a stock is a clear indicator
of the potential size of the markets in different countries.
Likewise, having a standard design of the heating elements as
proposed in [19] would bring enormous advantages concerning
replication and standardization efforts.

C. Intermittent Demand Prediction
A vital characteristic of an espresso machine is the ability

to deliver its products on demand despite extended periods of
zero demand. An attempt to anticipate such erratic demand is
ambitious and challenging because irregular demand arrivals
are combined with different demand sizes [7]. The literature
review shows that some solutions were discussed since this
problem frequently occurs in several industries, primarily as-
sociated with stock control systems, for example, engineering
spares kept at wholesale warehouses [21].

In this respect, J.D. Croston in [22] suggests decompos-
ing the data into two independent series: the first associ-
ated with inter-demand intervals (IDI) and the second fo-
cused on the value of non-zero demand. Many other al-
ternatives [23], [24], based on this method were later pro-
posed, such as Syntetos-Boylan Approximation [25] or Te-
unter–Syntetos–Babai method [26]. They all, however, focus
on estimating an average future demand. Nonetheless, a similar
approach for data generation may be applied due to a simi-
larity between coffee brewing behavior and stock control for
intermittent demand. In particular, addressing coffee demand
arrivals and sizes separately seems to be a reasonable concept.

However, before applying any direct technique, it is crucial
to consider the possibility of temporal aggregation. This idea
was successfully described and proven in [27]. According to
this work, it is possible to decrease or even eliminate variance
from demand arrivals by cutting down the frequency of the
data.

Another relevant issue to discuss is the selection of proper
distribution for the forecasting model. Numerous studies have
investigated the goodness-of-fit of several parametric statistical
distributions in intermittent demand. A lengthy discussion con-
cerns the selection of a proper distribution for forecasting data.
Considering the case of a discrete-time variable, a Bernoulli
process can generate demands, whereas, for continuous time,
the Poisson or Gamma distribution is used. Among others,
a compound Poisson distribution has been discussed among
operations research scientists [28], especially while applying
it along with geometrical distribution for demand size. One
may also follow the widely used normal distribution [22].
However, it would be somewhat unrealistic when applied to
demand sizes. Interestingly, a normality assumption can be
more reasonable in case of lead time demands due to the
central limit theorem’s impact on the summation of demands
over a relatively long time horizon or when the coefficient of
variation is low [29].

Fig. 2: Classification scheme for demand distributions, where
p corresponds to IDI.

In this respect, Syntetos and Boylan [25] developed a
demand distribution classification based on two parameters:
the IDI and the squared coefficient of variation C2

v . Their
empirical study resulted in the scheme presented in Fig. 2.
It can be observed that for low values of C2

v and IDI,
a normal distribution is recommended. Low C2

v generally
correspond to Poisson distribution, whereas Gamma is used
for extreme cases. A negative binomial distribution seems to
be a reasonable choice for other situations.

Another proposed qualification scheme divides data into
qualifying and non-qualifying. The qualifying one will be con-
sidered when the variance is not smaller than the mean. Two
distributions are recommended for them: NBD and Poisson.
Similarly, based on IDI and C2

v , four kinds of demand can be
distinguished [30]: 1) Smooth – in which occurrence has very
few no-demand values and demand itself has modest variation;
2) Intermittent – when there is plenty of no-demand data,
but variation is not substantial; 3) Lumpy – with a very high
variation of demand and high occurrence of no-demand data;
and 4) Erratic – with very few no-demand arrivals and present
high variability in demand size.

III. DATASET AND METHODS

The methodology to assess the potential of tertiary espresso
machines for participating in FCR markets consists of three
main steps: 1) investigate the patterns in coffee brewing within
particular days and hours to find the timeslots for which dis-
posable power for FCR services will be available; 2) generate
new daily datasets including the timestamps of coffee brewing
to simulate the aggregation of several espresso machines; and
3) for a given size of espresso machines aggregation estimate
the disposable power. The espresso machine data used in this
work and the three steps of the proposed methodology are
described next.

A. Coffee Machine Dataset

This work uses data from a three-group coffee machine
collected in a German café. This café is an independent,
average-sized, urban-style café and bar serving hot and cold
beverages, snacks, and drinks. It is open seven days per week
from 8 AM to 11 PM except for weekends, with operating
hours till 1-2 AM. The café owns two fully working espresso
machines La Marzocco Linea Classic model EE. A tertiary
espresso machine has five main elements: water boiler, coffee
boiler, exterior, three brewing groups, and pump [31]. The
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first two are of particular interest due to their heat storage
function. The steam boiler’s central part is a stainless steel
cylindrical tank with a minimum operating pressure of 1.5 bar.
The effective volume and standard power rate are 11 liters and
3 kW, respectively. On the other hand, the coffee boiler has a
much higher operating pressure equal to 9 bars and an effective
volume of 5 liters. The suggested coffee-making temperature
is 93.3◦C and is maintained via PID controller with a dT of
±0.5◦C [7].

The espresso machine was connected to a smart meter from
March 2019 till March 2020. Due to technical reasons and the
scope of this research, it was decided to consider three months
from 1st October to 31st December 2019 as a reference period.
The smart meter collects power values from each phase at
1Hz resolution and continuously transfers them to the central
server. Due to some technical limitations of the smart meter,
it was impossible to collect an error-free sample of data. As
such, it was necessary to perform a data-cleaning step before
proceeding with the remaining experiments. To this end, the
percentage of missing values for each phase was calculated.
The results were structured and presented in Fig. 3. It can be
noticed that slightly more than 4% of the first phase values
are missing, whereas this ratio equals 3.5% for the second
and third phases. Furthermore, the right side of Fig. 3 shows
how these missing values are correlated, i.e., it presents the
percentage of all possible combinations of missing values
within the dataset. 91% of all available data includes values
for all the variables, whereas only 0.38% of the instances have
missing values from all three phases.

Fig. 3: Graphical presentation of missing values in a single
day of data (5th October 2019).

It was decided that the missing values characterized by
random occurrences would be replaced. Different methodolo-
gies were discussed; however, a simple approach of replacing
NANs with the most recent non-NAN value before them was
chosen. This approach reflects the behavior of the appliance’s
load because the particular elements of the heating cycle
(such as the pump’s operational time, steam, and coffee boiler
heating phase) have a time length longer than one second.

B. Appliance Pattern Investigation

The first step is to analyze the impact of a particular
hour and weekday on the appliance’s load demand. This is
especially important for markets where FCR services can be
provided within small time intervals, i.e., different values can
be contracted for different days, day periods, or even particular
time blocks. On the other hand, for other sorts of markets, this
approach might be beneficial to identify the bottleneck of the
services.

An example plot of the espresso machine’s three-phase
power demand is presented in Fig. 4. The phase connection
to the electrical elements is the following: Phase 1: steam
boiler and coffee boiler, Phase 2: coffee boiler, and Phase 3:
steam boiler and a pump. Periodical, rectangular high peaks
reflect the power used for preserving heat in a steam boiler
(colored red and yellow). In contrast, more flattered, uneven
periodic rises show PID-controlled heating for a coffee boiler
(colored black and red). Since no coffee is made at night,
the pump’s power consumption is not shown in the graph. In
contrast, during the day, it is possible to observe several pump
activations (around 300 W) when several coffees are brewed.

Due to the lack of additional indicators on coffee brewing,
it is not feasible to identify the exact number of brewed
coffee products. Therefore, it is assumed that it is possible
to infer that a single coffee is produced when the pump works
longer than 16 seconds. This value is slightly lower than 20
seconds, the usual minimum time for brewing one espresso
[32]. However, it reflects the histogram of the pump’s working
time observed in the collected data and the exploratory data
analysis.

It is important to stress that this assumption underestimates
periods in which more than one coffee is brewed in short
succession since even a more prolonged pump activation will
account for a single coffee. However, for the sake of this
research, the most relevant aspect is the identification of the
periods in which coffee brewing started.

The interval for coffee counts is set to 10 minutes. Such
generated load profiles will help identify the timeslots with
similar power consumption. The timeslot with the lowest load
value will be treated as an FCR bottleneck.

C. Data Generation

Based on data collected from October 1st 2019 to November
29th 2019 (60 days), it was decided to create a data generator
to simulate a more significant number of espresso machines.
The first step in following this approach was to establish a
method to forecast the timestamps of brewing coffees.

In our specific dataset, there is some variation between
IDI and CV2, depending on the level of aggregation and a
particular day. However, most often, a squared coefficient of
variation is lower than 1. On the other hand, as mentioned
before, the IDI parameter can vary spectacularly, from values
up to 200 (seconds resolution) to nearly 1 (aggregated data).
Nonetheless, even aggregated data can obtain different values
from 1 to 8 (between 20:00 and 21:00).

Considering this, selecting the most adequate distribution
for a given dataset is challenging. However, based on Fig. 2,
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Fig. 4: Heating cycle of a coffee machine. Left: day time, right: night time.

one can suggest that NBD or Poisson distribution should be
addressed, as the gamma distribution is too extreme and the
normal one does not include the high IDI range. Although
the Poisson distribution is very encouraging, it was decided
to choose a negative binomial distribution for a few reasons.
Firstly, the presented qualification scheme is based on empiri-
cal studies of stock-keeping units (SKU). Thus, a discrepancy
between SKU and our dataset is probable. Consequently, a
distribution suitable for a broader range of IDI and CV2
is needed. Secondly, the NBD for low values of CV2 can
be less precise and provide more variety to our forecast.
Consequently, it can mitigate the negative effect of building
the prediction model on a single coffee machine. Following the
above discussion, the same methodology will be followed to
estimate intermittent demand as in [21]. The non-zero demands
are forecasted using Bernoulli distribution and are described
with the probability density function given by Eq. (1):

P (n) =

{
1− p if n = 0
p if n = 1

(1)

where n is a possible outcome, equal to 1 with probability p
(success) or 0 with probability 1 − p (failure). It is a special
case of binomial distribution with one number of trials. In our
case, the probability p is equal to the inverse of the inter-
demand interval:

p =
1

IDI
(2)

This creates a binary vector B of a given length l, where one
indicates that the demand is non-zero, and zero otherwise.

The size of the demand (number of coffees made when
demand is non-zero) is calculated using the negative binomial
distribution [28], [21] with given probability density function:

P (X = k) =

(
k + r − 1

k

)
× pr(1− p)k (3)

where, k is the number of failures, r is equal to number of
successes and p equals to probability of success, given by:

p =
µ

C2
v (1 + µ)2

(4)

where C2
v is the squared coefficient of variation.

The values generated with the negative binomial distribution
are directly increased by 1 to avoid demands of zero and create
a new vector C. Finally, the output is vector Xt:

Xt = Bc × Ct, t = 1, . . . , l (5)

The final step is to bootstrap the values of IDI, C2
v , and

µ from the existing espresso machine data to generate the
demand profiles of new coffee machines. To this end, a matrix
with 60 x 3 dimensions is created, consisting of IDI, C2

v , and
µ for each of 60 days. The parameters C2

v and µ are assumed
to follow a normal distribution from the collected data, which
is reasonable due to their respective histograms. However, it
was not possible to find a suitable proper distribution for IDI
data. Hence, it was decided to generate new IDI values with
a sampling method.

D. Disposable Power Calculation

The algorithm to calculate the disposal power from an
aggregation of coffee machines takes four inputs: the num-
ber of coffee machines to aggregate, the level of accuracy
representing the percentage of time for which a calculated
disposable power is available, a database with the coffee
boiler’s power distributions that was built from the existing
espresso coffee machine data, and the forecasted matrix of
coffees with the assigned pumps’ working time.

The algorithm is divided into two stages for each of the d
coffee machines. The first focuses on the coffee boiler, whereas
the second focuses on the steam boiler. It is assumed that
the pump’s consumption is negligible in comparison and is
ignored in this analysis. Each stage is built on a night heating
cycle, i.e., the cycle when coffees are not made. The on-duty
time is when a coffee boiler is switched on, and the off-duty
is when it is switched off.

In the case of a coffee boiler, the first step is to establish
an initial start point. It is set to a random value with a range
of average off-duty time +/- 10%. The length of the on-duty
cycle is calculated respectively: 90-110% of the average value.
Consequently, a starti and the starti+1 are known for each
cycle. Then, the pumps’ operation times between both start
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points are summed, corresponding to the total pump’s operat-
ing time between starti and starti+1. Then, from a database
of power distributions, a random one corresponding to a given
pump’s length is selected and copied in the middle of the
cycle. In rare cases where the respective power distribution is
missing, the algorithm automatically takes a distribution from
the lower pump’s operating time, increasing the pump’s time of
the next cycle. This might happen when a pump is constantly
working for more than 200 seconds, i.e., when several coffees
are brewed in quick succession.

The next step requires paying close attention to the steam
boiler. First, power consumption due to heat loss through the
tank walls will be considered. It corresponds to the steam
boiler’s night cycle. Thus, such a cycle will be projected based
on five hours of night data. Similarly, as in the previous step,
all time steps will be associated with mean values randomly
adjusted with a 10% margin. It is beyond the scope of this
analysis to model the connection between the steam boiler’s
power use and coffee production. Hence, for the sake of
simplicity, it is assumed that 50% of coffees require steam.
For randomly chosen 50% of coffee counts, we will adjust
the projected steam boiler power to the pump’s operation time.
This correlation results from the average value of steam power
per pump’s time in previously discussed 20-minute intervals.
Such value will be doubled to compensate for total energy
loss from the assumption that only half of the coffees use the
steam boiler. Furthermore, an adjustment is added to avoid
overlapping between the on-duty cycle of the steam boiler
(when it is simultaneously switched on due to the no-coffee
cycle and because of coffee brewing) so that maximum power
does not exceed 10 kW. An example of forecasted data for a
single coffee machine is presented in Fig. 5 between 10 AM
and 6 PM.

Fig. 5: Example of power demand generated based on data
from 10 AM and 6 PM.

Finally, the power distributions from the coffee and steam
boilers are combined and summed for the n synthetic espresso
machines, resulting in a total power distribution. Subsequently,
the estimated available disposable power is calculated by
finding the maximum power that occurs at least 98% of the
time. This is the disposable power for the n espresso machines.

IV. RESULTS AND DISCUSSION

This section presents the results of applying the methodol-
ogy to estimate the potential of tertiary espresso machines to
provide FCR services. First, the data from the original espresso
machine is presented in more detail. Then, the results are
projected for up to 100 espresso machines to assess the amount
of disposable power in function of the number of participating
devices.

A. Load Profile of an Espressoo Machine Based on Particular
Weekdays and Hours

This particular café operates throughout the week with
various opening hours. Thus, it is relevant to investigate the
impact of specific weekdays and hours on the load profile
of a coffee machine. The analysis will help identify a bottle-
neck in the appliance’s power consumption. Furthermore, for
auxiliary service markets, which allow shorter time blocks for
participants’ bids, this will suggest a potential available power
within particular time intervals. Two different approaches are
presented to investigate the impact of time intervals for the
load profile: the number of coffee brewed and the operation
time of the pump.

In Fig. 6, a distribution of produced coffees is presented.
The data is divided into separate weekdays such that any
patterns within a week can be observed. Only the timeframe
between 8 AM and 9 PM is depicted since no coffees are
brewed at night. As observed, mornings and evenings are
characterized by fluctuations because of switching the appli-
ance on and off, respectively. The presented values of coffee
brewed are obtained by calculating the averages for a particular
weekday. In Fig. 6, a similarity between all the weekdays can
be observed. Due to different opening hours, only Friday has a
flat curve from around 8:00 AM to 10 AM. Apart from Friday,
all weekdays have a morning increase in coffee production. It
is, however, challenging to indicate the period with maximum
values. Nonetheless, around 6 PM, the demand for drinks is
decreasing.

Fig. 6: Distribution of brewed coffees within weekdays and
hours.
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Ultimately, the appliance behavior can be divided into five
stable periods:

1) Nighttime, when no coffees are brewed;
2) Morning time (8 AM to 10 AM), when a rapid increase

in drinks production is observed;
3) Midday time (10 AM to 6 PM), when brewing coffees

are on a stable level;
4) Evening time (6 PM to 8 PM), when demand is decreas-

ing;
5) Closing time (8 PM to 9 PM), the last hour of normal

operation in the café.
Since the disposable power for FCR services is directly

correlated with coffee brewing, one may quickly identify
which periods of the day demonstrate the most significant
opportunities for balancing services. Interestingly, based on
Fig. 6, it is very likely that for the majority of the time (10
AM to 6 PM), there is the highest achievable disposable power.
On the other hand, the last operating hour (8 PM to 9 PM)
can be associated with our bottleneck time.

B. Disposable Power for FCR Services Based on Quantity of
Espresso Machines

A disposable power for FCR services was calculated for all
the five time periods mentioned above. The function of power
based on the number of coffees is presented Figs. 7 and 8.
This projection was prepared for the horizon of 100 coffee
machines in all cases. The Y-axis describes the power, whereas
the X-axis depicts the number of aggregated appliances. The
values presented in the graph are the averages of 100 different
machine aggregations (with 100 repetitions). The confidence
interval covered 95% of the results and was obtained by
computing the standard deviation of the 100 repetitions.

Interestingly, the curve is similar in all the graphs, which
can be divided into three parts. The initial, horizontal part
of the curve describes the time needed to establish a non-
zero power distribution within at least 98% of the forecasted
8-hour-long dataset. When this condition is met, the first
increment in disposable power appears in the graph. Next, the
curve turns into a more convex, polynomial shape. It can play
a role in a transition to its third, most relevant regime. The
curve becomes linear when the aggregation level is around 25-
30 espresso machines. Following this assumption of linearity,
estimating the achievable disposable power for any quantity of
devices is possible. The disposable powers per 100 machines
are presented in Table I.

TABLE I: Values of disposable power per 100 coffee machines
in given day periods.

Day Period Disposable Power (kW)
Night time 33,17
Morning time (8:00 – 10:00) 39.33
Midday time (10:00 – 18:00) 42.65
Evening time (18:00 – 20:00) 36.90
Closing time (20:00 – 21:00) 35.69

Based on the assumption of linearity, the function of
disposable power per espresso machine will be described
analytically. The curves will be considered linear from X=30

Fig. 7: Disposable power per number of aggregated coffee
machines when no coffees are brewed.

onwards. Consequently, five functions are created and pre-
sented in Table II. Interestingly, the linear coefficient has a
relatively small variance. Its difference between ‘the worst-
case scenario,’ when no coffees are made, and midday time
is only 0.13. Thus, one may point out that most energy
is consumed for preserving the boilers in a ready-to-use
state. This, on the one hand, emphasizes the importance of
improving the energy efficiency of coffee machines. On the
other hand, it also implicates relatively low dependence on
providing FCR services on the behavior of coffee consumers.

TABLE II: Analytical forms of functions of FCR power in the
different period.

Day Period Disposable Power (kW)
Night time F (x) = 0.41x− 7.82
Morning time (8:00 – 10:00) F (x) = 0.47x− 7.54
Midday time (10:00 – 18:00) F (x) = 0.50x− 7.38
Evening time (18:00 – 20:00) F (x) = 0.45x− 7.67
Closing time (20:00 – 21:00) F (x) = 0.43x− 6.78

V. CONCLUSION

This paper presented a study to assess the potential of
tertiary coffee machines to participate in FCR services. The
methodology was tested using synthetic data generated from
actual data collected from one coffee machine in Germany.

Overall, the results show that it is possible to participate in
delivering FCR services provided enough espresso machines
are aggregated. Ultimately, this can also be seen as an indicator
of the potential for including other gastronomy appliances
in the demand-side flexibility market, dominated mainly by
larger industrial consumers or the aggregation of household
appliances.

In fact, introducing clean energy sources in restaurants has
already been identified as one of the pillars of sustainable
restaurants [33], where the authors claim that restaurants
should consider buying green energy or offsetting carbon
emissions. In this sense, this claim aligns with the work
proposed in this paper since providing FCR is an indirect way
to increase renewable energy penetration.
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(a) (b)

(c) (d)

Fig. 8: Disposable power per number of aggregated coffee machines: (a) between 08:00 and 10:00; (b) between 10:00 and
18:00; (c) 18:00 and 20:00; (d) 20:00 and 21:00.

There are, however, some challenges and limitations that
still need to be addressed in future work.

First and foremost, it is important to remark on the sim-
plicity of the FCR estimation algorithm that relies on a set of
assumptions derived from data observation. In this sense, in
future iterations of this work, it would be important to include
data-driven methods to automatically identify and classify the
different transitions observed in the power demand data. One
possible alternative would be the application of Non-Intrusive
Load Monitoring (NILM) [34] to identify the moments when
coffee is being brewed.

Second, it is assumed that the bottleneck of FCR services
will be delivering power to the grid, i.e., power reduction of
an espresso machine rather than receiving power from the
grid. This, however, should be verified and discussed further.
Likewise, the impact of delivering the balancing services on
the thermodynamic state of steam and water and, consequently,
on the product quality should be analyzed in future iterations
of this work.

Another limitation is that the entire data analysis was based
on the power consumption of a single espresso machine in a
particular café in Germany. Consequently, the results may be

biased toward the specific behavior of this particular coffee
house.

Furthermore, future works should consider different ap-
proaches for the applied methodology. For example, it can
be very relevant to examine other forecasting techniques,
including the application of deep neural networks such as
Long Short-Term Memory Networks (LSTM), as these are
known to produce accurate forecasts in time-series data. More
importantly, forthcoming studies could further develop and
confirm these initial findings by increasing the scope of the
available datasets to a more extensive and dispersed set of
espresso machines and gastronomy points. In addition, the
investigation of delivering FCR by drawing power from the
grid and its impact on product quality should be conducted.
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