
Citation: Gomes, E.; Pereira, L.;

Esteves, A.; Morais, H. Metaheuristic

Optimization Methods in Energy

Community Scheduling: A

Benchmark Study. Energies 2024, 17,

2968. https://doi.org/10.3390/

en17122968

Academic Editor: Carlo Roselli

Received: 13 May 2024

Revised: 10 June 2024

Accepted: 12 June 2024

Published: 17 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Metaheuristic Optimization Methods in Energy Community
Scheduling: A Benchmark Study
Eduardo Gomes 1,2,3 , Lucas Pereira 1,2,* , Augusto Esteves 1,2 and Hugo Morais 1,3

1 Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal;
eduardo.c.gomes@tecnico.ulisboa.pt (E.G.); augusto.esteves@tecnico.ulisboa.pt (A.E.);
hugo.morais@tecnico.ulisboa.pt (H.M.)

2 Interactive Technologies Institute (ITI), Laboratory for Robotics and Engineering Systems (LARSyS),
1049-001 Lisbon, Portugal

3 Instituto de Engenharia de Sistemas e Computadores: Investigação e Desenvolvimento em Lisboa (INESC-ID),
1000-029 Lisbon, Portugal

* Correspondence: lucas.pereira@tecnico.ulisboa.pt

Abstract: The prospect of the energy transition is exciting and sure to benefit multiple aspects of
daily life. However, various challenges, such as planning, business models, and energy access are
still being tackled. Energy Communities have been gaining traction in the energy transition, as they
promote increased integration of Renewable Energy Sources (RESs) and more active participation
from the consumers. However, optimization becomes crucial to support decision making and the
quality of service for the effective functioning of Energy Communities. Optimization in the context of
Energy Communities has been explored in the literature, with increasing attention to metaheuristic
approaches. This paper contributes to the ongoing body of work by presenting the results of a
benchmark between three classical metaheuristic methods—Differential Evolution (DE), the Genetic
Algorithm (GA), and Particle Swarm Optimization (PSO)—and three more recent approaches—the
Mountain Gazelle Optimizer (MGO), the Dandelion Optimizer (DO), and the Hybrid Adaptive
Differential Evolution with Decay Function (HyDE-DF). Our results show that newer methods,
especially the Dandelion Optimizer (DO) and the Hybrid Adaptive Differential Evolution with Decay
Function (HyDE-DF), tend to be more competitive in terms of minimizing the objective function. In
particular, the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) demonstrated
the capacity to obtain extremely competitive results, being on average 3% better than the second-best
method while boasting between around 2× and 10× the speed of other methods. These insights
become highly valuable in time-sensitive areas, where obtaining results in a shorter amount of time is
crucial for maintaining system operational capabilities.

Keywords: energy communities; grid management; optimization; metaheuristics; population-based;
swarm-based; benchmark

1. Introduction

The transition towards sustainable energy systems is a critical challenge for developing
sustainable cities and societies [1]. The European Union (EU) has set the ambitious target
of achieving net zero Greenhouse Gas (GHG) emissions by 2050, thus requiring significant
efforts in sectors such as electricity, transportation, and industry [2,3]. Machine Learning
and optimization have emerged as essential tools for managing the growing number of
renewable resources, Electric Vehicles (EVs), and other technologies are being integrated
into the grid [4].

Energy Communities (ECs) are a promising concept that can help accelerate the
transition towards sustainable energy systems while promoting local technological and
societal development [5,6]. Citizen Energy Communities, in particular, are community-
based organizations that enable citizens to invest in and benefit from renewable energy

Energies 2024, 17, 2968. https://doi.org/10.3390/en17122968 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17122968
https://doi.org/10.3390/en17122968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3595-312X
https://orcid.org/0000-0002-9110-8775
https://orcid.org/0000-0003-1621-5375
https://orcid.org/0000-0001-5906-4744
https://doi.org/10.3390/en17122968
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17122968?type=check_update&version=1


Energies 2024, 17, 2968 2 of 18

resources such as solar energy and that share power among the involved parties through
several emergent mechanisms such as consumer/prosumer markets [7]. Another EC guise,
Local Energy Communities (LECs), have been linked to the Sustainable Development Goals
(SDG) as an enabler for sustainable and social development [8], while works such as [9]
delve in greater detail into the potential impacts considering individual goals of SDG.

Resource optimization has been widely studied in the context of Energy Communi-
ties, with many works focusing on scheduling, planning, energy resources management,
and energy trading [10–13]. Common approaches include Linear Programming (LP), Mixed
Integer Linear Programming (MILP), and other methods such as metaheuristics [6]. How-
ever, the use of optimization in ECs is not without its challenges. In particular, the mutating
nature of the interactions with the grid—be it by the aforementioned growing number of
technologies to interact with it or market strategies—introduces uncertainty and constitutes
an additional layer of complexity. High-quality modeling is then required, as poor EC
definitions can lead to suboptimal results, such as constraints not reflecting real-world
situations correctly. Furthermore, the computational requirements of optimization algo-
rithms can be significant, thus making it infeasible to apply them in some contexts such as
real-time scenarios [14].

Metaheuristics appear as a competitive alternative that can alleviate some of the mod-
eling costs and provide a way to obtain possible solutions, even if they are not optimal [14].
However, with rapid expansion in the field and the introduction of new algorithms,
there is a lack of literature on the benchmarking and methodologies for doing so [15].
While some works have already benchmarked existing algorithms in different contexts,
e.g., [16,17], there is currently no literature that benchmarks metaheuristics in the context
of Energy Communities.

To bridge the identified lack of metaheuristic benchmark works in ECs, we propose a
benchmark on an Energy Community scenario available online. The data and source code
are available at https://github.com/ECGomes/pyecom/tree/main (accessed on 11 June
2024) through the PyECOM GitHub repository. This work then provides a benchmark of
six algorithms—the Mountain Gazelle Optimizer (MGO) [18], the Dandelion Optimizer
(DO) [19], the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) [20],
Differential Evolution (DE) [21], the Genetic Algorithm (GA) [22], and Particle Swarm
Optimization (PSO) [23]. The algorithms are applied in the context of energy management
and scheduling in an Energy Community and are compared based on their objective
function, execution times, and the effect of each solution on EC management. The used
EC provides a testing ground that has both renewable and non-renewable energy sources
in an attempt to exemplify how Renewable Energy Sources (RESs) can be integrated into
the workings of the community. Our contributions can be described as follows:

• The development of an Energy Community benchmark procedure to evaluate and
compare the performance of various metaheuristics.

• Providing a comparative analysis of the different methods based on key metrics
such as objective function values, computational efficiency (iterations per second),
and solution component quality.

The remainder of this paper is organized as follows. In Section 2, we present a literature
review of the relevant work on optimization in Energy Communities. In Section 3, we
present the formulation of the objective functions used throughout this work. In Section 4,
we describe the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-
DF) algorithm, as well as the other methods used for the benchmark. In Section 5, we
present the results of our experiments and compare the Hybrid Adaptive Differential
Evolution with Decay Function (HyDE-DF) with the remaining methods, thus providing
a brief analysis of each. In Section 6, we provide our insights on the performance of the
algorithms from a more technical perspective, thus elucidating possible reasons for their
behavior. Finally, in Section 7, we discuss the implications of our results and provide some
concluding remarks.

https://github.com/ECGomes/pyecom/tree/main


Energies 2024, 17, 2968 3 of 18

2. Background and Related Work

The energy transition is a trending area of research, thus intending to move away
from pollutant energy sources to others that are less pollutant and renewable. However,
the literature indicates that a complete energy transition has never taken place, and this
may cause its own set of problems [24–26]. Regarding issues that arise from the rise of
Renewable Energy Sources (RESs), ref. [25] highlights the social components, thus drawing
attention to the potential lack of access to energy, energy costs inflation, and the loss of
revenue brought on by declining industries such as coal, as well as the implications on
environments where it is a source of income. In [26], the authors discuss the meaning of
“transition” and argue how it is more akin to “addition”, thus expanding the energy pool
instead of replacing certain aspects of energy production. In particular, the authors discuss
how the consumption of previous sources has continued to grow despite the introduction
of new technologies.

Energy Communities are a concept that has been gaining traction in recent years, thus
having gained the backing of the EU [5], and they are expected to contribute to the EU’s
emission goals while paving the way for more sustainable environments [27]. Having as
base principles the facilitation of the access of energy to a wider population—thus providing
incentives to renewable technology integration, citizen participation, and energy equity—
ECs have the potential to play an active part in the energy sector while aiming to provide
social benefits and opportunities to the parties involved [28]. However, management in this
context requires careful planning and has been widely studied in recent years, with many
works exploring the potential benefits through the use of optimization techniques. This
section provides a review of the literature on the relevant research on optimization in ECs,
thus highlighting key findings and contributions.

In the electricity sector, optimization is crucial for addressing various challenges. Key
research areas encompass forecasting [29], scheduling [30], storage control [31], energy
trading [32], and load disaggregation [33]. Additional research focuses on maximizing
self-consumption [34] and minimizing costs [35]. Specifically, ECs are influenced by all
these issues.

Scheduling in ECs becomes a quintessential aspect of their functioning. It is vital, as it
helps to manage the use of renewable energy resources to maximize efficiency and minimize
costs. ECs often have different sources of generation, storage solutions, and consumption
profiles, and scheduling can be used to optimize the interactions between components.
Battery Energy Storage Systems (BESSs) are often studied, because they provide the oppor-
tunity to store energy when generation is abundant and to supply it later when necessary,
thus reducing waste and costs. In [36], the authors studied a Renewable Energy Commu-
nity (REC) that possesses photovoltaic generation and analyzed the impact of a Battery
Energy Storage Systems (BESS), thus providing an economic assessment of the impact of
the optimization strategy adopted.

Energy trading has also gained attention, thus facilitated by technological develop-
ments where consumers have become an active part of energy generation by becoming
prosumers [7]. Peer-to-Peer (P2P) has emerged as a way for prosumers to exchange energy
between them, thus lowering the requirements imposed upon the main grid [37]. This shift
has led to the need for new market solutions that consider not only the main grid but also
the new roles of prosumers [7,38]. User preferences have been studied, with works such
as [39] analyzing the benefits beyond the technological and economic perspectives. Further-
more, works such as [35] explore the integration of EVs through a Vehicle-to-Grid (V2G)
approach and how their interactions with ECs can be modeled, thereby also highlighting
their potential advantages in markets.

Overall, optimization techniques play a critical role in the management of ECs, thus
providing a means to optimize the use of Renewable Energy Sources (RESs), storage
systems, and other technologies. LP is a common optimization technique used in EC
research, which is a mathematical method that is used to find the optimal solution to a
problem composed of linear constraints and objective functions. MILP is a similar method



Energies 2024, 17, 2968 4 of 18

to LP, with the addition of binary variables. In [6], the authors mention MILP as the most-
used approach for ECs research. It has been used to find the optimal generation, storage,
and charging schedule that minimize the cost of energy while supplying the required
power demand, e.g., [35,40].

While LP and MILP are capable of finding an optimal solution, these methods are
reliant on the quality of the constraints imposed and the definition of the objective function.
This can be troublesome, as some constraints may not necessarily reflect the real-world
behavior of systems, such as battery interactions and their degradation. Approximation
methods such as the mentioned metaheuristics can prove helpful in these cases. However,
metaheuristics require significant computational resources, and there is a tradeoff between
solution quality and time expended [14].

In [14], the authors presented a comprehensive review of the use of metaheuristics
in the context of smart grids and some of the main tasks involved, such as Optimal
Power Flow (OPF). Differential Evolution (DE), the Genetic Algorithm (GA), and Particle
Swarm Optimization (PSO) were among the most commonly applied methods and the
most common benchmarks for other proposed algorithms. Furthermore, the success of
metaheuristics and the appeal of being adaptable to various problems, unlike regular
heuristics that are problem-dependent, resulted in the search for natural behaviors that can
be emulated mathematically. This is the case for recent methods such as the Dandelion
Optimizer (DO) and the Mountain Gazelle Optimizer (MGO), which have already proven
to be capable in the energy domain, with works such as [41,42].

However, as mentioned in [15], the field of metaheuristics lacks benchmarks and
methodologies, as well as reproducible use cases to standardize the testing of new methods.
This is also the case in the field of Energy Communities where, to the best of the author’s
knowledge, there are currently no published benchmarks on metaheuristic optimization.

3. Energy Community Formulation

The work presented is based on a scenario described in [43], thus describing an
Energy Community comprising renewable (n = 5) and non-renewable generators (n = 2),
BESSs (n = 3), EVs (n = 5), and import and export capabilities. The presented scenario has a
horizon of 24 timesteps, thus intending to minimize operational and economic costs. Table 1
presents an overview of the Energy Community used throughout this work, with the values
representing the sum of the grouped components.

Table 1. Energy Community scenario demographics.

Components Power (kW) Energy Capacity (kWh)

Main Grid 50 -
Renewable Generators 56 -

Non-Renewable Generators 40 -
Load Consumption (Peak) 93.5 -

BESSs 30 165
Electric Vehicles 36 240

Each of the resource groups obeys the constraints described in [43], which are common
to all algorithms. The objective function utilized can be described as the sum of all the
production and consumption costs, with an added penalty to reflect imbalance situations.
The penalty is formulated in a way such that all algorithms can achieve solutions that
respect the imposed constraints and maintain grid stability, thereby being heavily penal-
ized otherwise. Equation (1) presents the objective function used throughout this work,
except for BESSs and EVs, where Equation (2) is utilized.

objFn1 =
N

∑
n

T

∑
t

usagen,t × ϕn,t (1)



Energies 2024, 17, 2968 5 of 18

objFn2 =
N

∑
n

T

∑
t

ϕn,t(%SoCn,t − 0.63)2 + dch×ϕdch
n,t + ch×ϕch

n,t +
6.5 × 10−3

capacity_maxn
(chn,t)

2 (2)

In particular, Equation (2) follows the proposed formulation found in [44], thus im-
plemented to consider storage degradation costs. The values 0.63 and 6.5 × 10−3 were
chosen upon experimenting with the cost curves and can be found in PyECOM’s repository.
The penalty was added as a fixed value, at each timestep, whenever the excess or deficit
energy could not be handled by the community’s imports and exports.

As such, the resulting objective function, including penalties, can be found in Equation (3):

obj = objFn1 + objFn2 +
T

∑
t

penaltyt (3)

4. Materials and Methods

This section describes the algorithms, tools, encoding, solution handling strategies,
and the methodology that was used to evaluate the performance and consistency of various
optimization methods.

4.1. Algorithms

As previously mentioned, the algorithms benchmarked in this paper are the Mountain
Gazelle Optimizer (MGO), the Dandelion Optimizer (DO), the Hybrid Adaptive Differential
Evolution with Decay Function (HyDE-DF), Differential Evolution (DE), the Genetic Algo-
rithm (GA), and Particle Swarm Optimization (PSO). The last three algorithms were chosen
for being commonly used in the literature [6,14,16], while the Hybrid Adaptive Differential
Evolution with Decay Function (HyDE-DF) appears as an improvement to Differential
Evolution (DE). The Mountain Gazelle Optimizer (MGO) and the Dandelion Optimizer
(DO) reflect the emergence of newer algorithms inspired by nature. Overall, the selected al-
gorithms represent two large families of metaheuristics, namely population-based methods
(HyDE-DF, DE, and GA) and swarm-based methods (PSO).

4.1.1. Differential Evolution

The Differential Evolution (DE) algorithm [21,45] is a simple optimization method that
generates new solution candidates by selecting three existing vectors from the population
at a time. The difference between the second and third vectors is then added to the first.
This makes it so that Differential Evolution (DE) is easily applied to various scenarios.
The operator is described in Equation (4).

m⃗i,G = x⃗i,G + F(x⃗r1,G − x⃗r2,G) (4)

A population size of 20 was used, thus being the default value in the optimization
framework utilized throughout this work. For the crossover rate, a value of CR = 0.3 was
selected following the recommendations for the type of problem tackled, which is found
in [46].

Jitter, a technique where the weighting factor F is randomly chosen for each difference
vector, was available for use, as it helps the convergence of the algorithm [46]. However, it
was disabled due to errors during execution.

4.1.2. Hybrid Adaptive Differential Evolution with a Decay Function (HyDE-DF)

Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) is a modified
version of Hybrid Adaptive differential Evolution (HyDE), which is a successor to Differen-
tial Evolution (DE). Population generation is inspired by the original differential evolution
algorithm [21], in which each population element is updated by a factor of the difference
between two other elements. The operator, as described by the authors, is presented in
Equation (5):



Energies 2024, 17, 2968 6 of 18

m⃗i,G = x⃗i,G + δG · [F1
i (ϵ · x⃗best − x⃗i,G)] + F2

i (x⃗r1,G − x⃗r2,G) (5)

where x⃗i,G is the current vector, x⃗best represents the best solution found thus far, and x⃗r1,G
and x⃗r2,G represent two individuals from the population. Vectors x⃗i,G, x⃗r1,G, and x⃗r2,G are
different among themselves. The hybrid adaptive component of the algorithm is responsible
for keeping track of scale factors for each population element throughout iterations. These
are represented in Equation (5) by F1

i , F2
i , and ϵ, where ϵ = N (F3

i , 1), which is inspired
by [47]. The term [F1

i (ϵ · x⃗best − x⃗i,G)] promotes convergence in the direction of current best
candidate solutions [20], thus having its weight reduced over time by a decay factor δG,
which is similar to Simulated Annealing (SA) [48].

The Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) im-
plementation for this work follows the implementation provided by the original authors
in [49]. As with the original implementation, elitismis promoted, with the best solution of
each iteration being injected into the next iteration. However, said implementation only
allows for the definition of a single value range shared across all variables. This constitutes
a challenge in problems where, for example, different variables operate in different ranges.
Motivated by this issue, this paper’s implementation of Hybrid Adaptive Differential
Evolution with Decay Function (HyDE-DF) allows for the specification of individual vari-
able value ranges, thus furthering the algorithm’s capabilities. The chosen parameters
for the Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) were a
population size of 20 coupled with a crossover rate CR = 0.3. The crossover value was
preserved from the Differential Evolution (DE) algorithm, while a reduced population size
was set, as empirical experiments with larger values did not alter the results obtained.

4.1.3. Genetic Algorithm

The Genetic Algorithm (GA) is a classical optimization algorithm that attempts to
emulate biological evolution [22]. A population of potential solutions is initialized and
evaluated using a fitness function. The candidates in the population are then selected
according to a set of criteria, such as their fitness score or their position in the population.
The selected options undergo crossover, where information from two solutions is combined
to create a new solution, and mutation, where new, random variations are introduced into
the population. The resulting population is then evaluated again, and the process repeats
until an optimal solution is found. The settings for this algorithm, such as the population
size, the probabilities of crossover and mutation, and the selection method, were left at
their default values.

4.1.4. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [48] attempts to leverage the behavior of swarms
found in nature. A population is initialized and spread across the solution space, with each
swarm particle moving along the space using a dynamic velocity component. This com-
ponent incorporates information on how well the individual particle performs, as well
as the swarm’s best found solution. Both individual and swarm components can have
different weights, thus constituting a tradeoff between personal or global importance,
with higher personal values promoting exploration, whereas higher global importance
promotes exploitation. Pymoo possesses an adaptive option, thus updating these weights
with each generation.

As an evolutionary algorithm, Particle Swarm Optimization (PSO) can explore the
global search space. However, a possible issue can be encountered whenever a local
minimum is found, as the swarm may converge toward it. This is more frequent when the
population size is too small for the problem at hand, as there is an insufficient exploration
across the solution space. Mentioned by [50] as an “Exploration and exploitation strategy based
on behavior in swarms", the swarm may be drawn to exploiting the local optima found.



Energies 2024, 17, 2968 7 of 18

4.1.5. Mountain Gazelle Optimizer

The Mountain Gazelle Optimizer (MGO) [18] is a method inspired by the behavior of
mountain gazelles, and it is split into stages that attempt to emulate the cycle of the rise
and fall of a gazelle population. The Mountain Gazelle Optimizer (MGO) counts with four
update mechanisms per existing solution, at the end of which a new solution is added to
the population. Whenever the entire population is updated, the amount of solutions is
sorted in ascending order and trimmed to the maximum population value set by the user.
This results in the best gazelles surviving for the next iteration.

The update stages are based on the bachelor male herds, maternity herds, solitary
territorial males, and migration. These operators were designed to create new gazelles such
that issues such as getting stuck on local optima happen less often.

It should be noted that while the algorithm can promote exploration and produce
quality results, the number of operators and new solutions injected into the population
results in added computational time, as the evaluated solutions become pop_size × 5 per
iteration. This algorithm was implemented in Python by the authors of this work, thereby
following the MATLAB source code (version 1.0.1) of the authors of the method.

4.1.6. Dandelion Optimizer

The Dandelion Optimizer (DO) [19] tries to replicate the spread of dandelion seeds
through the wind in nature. It is comprised of a rising stage, a descending stage, and a
landing stage. The rising and descending stages focus on the exploration aspect of the
landscape, thus serving to disseminate the various solutions across the terrain, while the
landing stage focuses on exploiting. The landing stage attempts to converge to a location
that is best suited for survival, thereby eventually reaching the global optima.

The dandelion seeds are updated at the end of each landing stage, thus resulting in
a new population of solutions to carry over. As is the case with the Mountain Gazelle
Optimizer (MGO), this algorithm was implemented in Python by the authors of this work,
thereby following the MATLAB source code (version 1.0.4) of the authors of the method.

4.2. Tools

The entire work was implemented in Python using the PyECOM package [51], which
is available on GitHub. The Mountain Gazelle Optimizer (MGO), Dandelion Optimizer
(DO), and Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) opti-
mization algorithms are provided by PyECOM, while the three other algorithms described
in the previous subsection are implemented by the package Pymoo (version 0.6.0.1). These
algorithms were selected, as they are prevalent among related works using metaheuris-
tics [14].

Code efficiency was taken into account during the development of this work, as the
metaheuristics implemented, as well as the repair procedures, prioritized matrix-based
calculations whenever possible instead of resorting to loops.

Pymoo [52] is a Python package that focuses on optimization, thus providing a simple
and common interface to several existing and well-known optimization algorithms such
as those previously mentioned, as well as implementations of methods such as NSGA-
II [53]. To complement the algorithms, it also provides constraint handling and several
customization options for developing new algorithms. A stop criterion was set on all
Pymoo algorithms to ensure fast execution and reduce excess computation. The stop
criterion used is Pymoo’s default single objective termination, thus considering the number
of generations and evaluations, as well as objective tolerance.

All the results in this paper were obtained on a laptop with an Apple M3 chip (12 core)
and 18 GB RAM. The implementations relied solely on the CPU.

4.3. Encoding and Solution Handling

The encoded solutions throughout this work are in the form of a vector with length N,
which is calculated by N = decision_variables × timesteps. This is achieved by flattening



Energies 2024, 17, 2968 8 of 18

and concatenating the variable matrices. Decoding is possible, as the placement of any
given variable within the vector is known beforehand.

Due to the nature of metaheuristics, a repair procedure for each candidate solution is
required to ensure that produced solutions are viable. For this purpose, each solution is
decoded and repaired before being evaluated in terms of fitness. The repair procedure is
the same across all methods, whether implemented by PyECOM or Pymoo.

The initial population is dependent on the method used, with Genetic Algorithm (GA),
Differential Evolution (DE), and Particle Swarm Optimization (PSO) using Pymoo’s initial
population conditions, while Dandelion Optimizer (DO), Mountain Gazelle Optimizer
(MGO), and Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF)
generate an initial population within lower and maximum bounds for each dimension. It
should be noted that while this work does not provide an initial solution to have a fair
comparison between algorithms, providing an initial solution to the methods can lead to
an overall improvement in performance.

4.4. Hyperparameter Settings

To assess the performance and consistency of each method, 10 experiments were run
for each algorithm, with the maximum number of iterations set to 20,000. An epsilon
stopping criteria of 1 × 10−4 was set, with a tolerance of 1000 iterations. The experiments
were performed with random seeds to evaluate the variability of the results. Table 2
displays the hyperparameters used for each algorithm.

Table 2. Algorithm hyperparameter settings.

Algorithm Parameters

MGO pop = 20
GO pop = 20

HyDE-DF pop = 20, Fweight = 0.5, FCR = 0.3
DE pop = 20, variant = ‘DE/rand/1/bin’, CR = 0.3, jitter = False, sampling = LHS
GA pop = 20
PSO pop = 20, adaptive = False

4.5. Evaluation Procedure

Each algorithm was analyzed considering the solutions produced and execution
speeds, thus making it possible to judge both the quality of the solution and the compu-
tational performance. The metric for evaluating solutions is the objective function value,
thus giving an overall idea of the costs of the solution, as well as providing an objective
value to compare solutions at a glance. Finally, each solution can be decomposed into the
several components that make up the Community, such as generation and storage usage,
which enables the evaluation of the effects of the optimization in the EC.

5. Results

In this section, the various optimization algorithms are compared, with an analysis
of objective function values, iterations per second, total number of iterations, and pro-
vided solutions. Table 3 reports the values of the objective function of all runs conducted
throughout this work, with Table 4 providing insights on the execution speeds, which are
reported in iterations per second. Table 5 informs the number of iterations utilized by each
method before established stopping criteria take effect. Figure 1 showcases the difference
in the computational performance outcomes between the compared methods. The Hybrid
Adaptive Differential Evolution with Decay Function (HyDE-DF) was vastly superior to
the other benchmarked methods, thus boasting over double the average speed compared
to the second-fastest method (Differential Evolution (DE)). This difference was further
exacerbated when compared to the remaining methods, thus widening the gap to a factor
of 10 times the speed of the Mountain Gazelle Optimizer (MGO).



Energies 2024, 17, 2968 9 of 18

Table 3. Optimization algorithm objective function values. Highlighted in bold are the best runs of
each algorithm, with the worst results being underlined.

MGO DO HyDE-DF DE GA PSO

Run 01 134.84 56.42 41.34 42.83 107.33 186.59
Run 02 222.32 58.01 39.73 42.31 152.62 194.66
Run 03 232.12 61.29 40.36 42.83 132.25 200.01
Run 04 104.28 60.13 39.27 42.83 127.25 196.24
Run 05 177.75 58.97 39.90 42.83 91.19 178.24
Run 06 172.78 57.29 41.06 43.05 177.25 177.24
Run 07 141.10 53.14 45.28 42.83 119.99 199.92
Run 08 148.52 58.42 42.21 42.99 119.67 186.33
Run 09 253.40 57.23 43.65 42.83 145.07 223.80
Run 10 182.18 59.53 39.88 41.68 130.07 237.76

µ 176.82 58.94 41.27 42.70 130.27 198.08
σ 44.94 2.15 1.83 0.39 22.83 18.32

Table 4. Iterations per second of algorithm runs. Values were calculated through the division of the
number of iterations by execution time in seconds. Highlighted in bold are the fastest runs of each
algorithm, with the worst being underlined.

MGO DO HyDE-DF DE GA PSO

Run 01 8.01 36.20 84.55 37.71 35.68 24.12
Run 02 8.02 34.62 85.04 37.45 35.13 24.19
Run 03 8.07 34.10 84.92 37.51 34.75 23.32
Run 04 8.37 34.90 85.03 37.70 35.18 24.81
Run 05 8.20 33.93 84.72 37.63 34.91 24.02
Run 06 7.93 33.25 84.76 37.68 35.52 24.52
Run 07 8.00 34.56 84.99 37.21 34.83 23.82
Run 08 8.08 33.33 84.63 38.26 34.77 24.10
Run 09 8.38 32.86 84.97 37.79 35.36 23.06
Run 10 8.10 32.84 84.03 37.81 34.77 24.50

µ 8.12 34.06 84.76 37.68 35.09 24.05
σ 0.15 1.00 0.29 0.26 0.32 0.51

Table 5. Number of iterations of each algorithm run. The maximum allowed is 20,000 iterations.

MGO DO HyDE-DF DE GA PSO

Run 01 20,000 20,000 20,000 5716 15,898 20,000
Run 02 20,000 20,000 20,000 4400 14,795 20,000
Run 03 20,000 20,000 20,000 4422 17,418 20,000
Run 04 20,000 20,000 20,000 4648 14,809 20,000
Run 05 20,000 20,000 20,000 4761 16,830 20,000
Run 06 20,000 20,000 20,000 4552 15,510 20,000
Run 07 20,000 20,000 20,000 4455 17,424 20,000
Run 08 20,000 20,000 20,000 4422 15,599 20,000
Run 09 20,000 20,000 20,000 5090 16,648 20,000
Run 10 20,000 20,000 20,000 4476 15,003 20,000

µ 20,000 20,000 20,000 4694.20 15,993.40 20,000
σ 0.0 0.0 0.0 395.87 970.71 0.0

Among the tested methods, the Hybrid Adaptive Differential Evolution with Decay
Function (HyDE-DF) achieved the best results, with consistently lower objective function
values. This was followed by the Differential Evolution (DE) algorithm, with an average
difference of 3% comparred to the Hybrid Adaptive Differential Evolution with Decay
Function (HyDE-DF), but with a significantly lower variance, which was the lowest among
all methods. At a high level, the Dandelion Optimizer (DO) performed capably, with its
average objective function value ranking third. The Genetic Algorithm (GA) did not achieve



Energies 2024, 17, 2968 10 of 18

good results compared to the three methods that found more suitable solutions, both in
terms of objective function and speed. The Mountain Gazelle Optimizer (MGO) and Particle
Swarm Optimization (PSO) were found to have high variance, thus indicating inconsisten-
cies when producing results, and they were overall the worst-performing methods. Figure 2
presents the individual components of the generated best solutions of each algorithm to
facilitate comparisons between methods.

Figure 1. Algorithm iterations per second.

Figure 2. (a) Imports and exports of best runs of each algorithm. (b) Production and excess generation
of best runs of each algorithm. (c) Load reduce, cut, and energy not supplied for each of the best runs
of each algorithm. (d) Storage charge and discharge amounts for the best run of each algorithm.

5.1. MGO

The Mountain Gazelle Optimizer (MGO) presented a high standard deviation on the
objective function values (44.94) and the lowest amount of iterations per second (8.12), thus
indicating that the method is not particularly well suited for the proposed task. Regarding
the achieved solutions, its best solution attained a value of 104.28 throughout the maximum
allowed iterations. More concretely, the Mountain Gazelle Optimizer (MGO) made use of
a large volume of imports, thus managing to guarantee the necessities of the community
albeit at the cost of some generated energy being wasted, as per Figure 2. This method



Energies 2024, 17, 2968 11 of 18

did not employ the storage systems present in the scenario at all. Figure 3 presents a more
detailed view of the utilization of resources chosen by the best solution.

Figure 3. (a) MGO consumption components best run. (b) MGO production components best run.

5.2. DO

The Dandelion Optimizer (DO) algorithm obtained an average objective function
value of 58.94 and 34.06 iterations per second. The analyzed run presents an overall
balanced approach that made the most of renewable generators whenever possible, thereby
only resorting to a non-renewable generator at night, as seen in Figure 4. The additional
consumption profile of the solution was met using the storage technologies and imports
from the main grid. However, the small use of energy not supplied and load-reducing
techniques hampered the solution, thus making it unsuitable for practical applications.

Figure 4. (a) DO consumption components best run. (b) DO production components best run.



Energies 2024, 17, 2968 12 of 18

5.3. HyDE-DF

The Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) was
the best-performing algorithm, with its best run achieving an objective function value
of 39.27 over the maximum allowed iterations. Figure 5 presents the distribution of the
resources used through the considered window, which is categorized into generation and
consumption domains presented by the solution.

Figure 5. (a) HyDE-DF consumption components best run. (b) HyDE-DF production components
best run.

The chosen solution for the HyDE-DF algorithm presented a stable renewable genera-
tion, thereby only complemented by a non-renewable source in two instances. Taking into
account the deterministic behavior of the electric vehicles, the solution achieved presented
a greater focus on discharging BESS components to achieve system balance. Although a
supplementary non-renewable generator was part of the community formulation, it was
not utilized; instead, the algorithm preferred to import the remaining energy from the
grid. Overall, the solution presented by the Hybrid Adaptive Differential Evolution with
Decay Function (HyDE-DF) is a feasible one that does not need to resort to load-cutting or
load-reducing techniques to preserve the well-being of the system.

Regarding the performance, the Hybrid Adaptive Differential Evolution with Decay
Function (HyDE-DF) boasts the highest iterations per second values and was significantly
faster than the rest of the algorithms compared in this work. Coupled with the achieved
objective function values, the Hybrid Adaptive Differential Evolution with Decay Function
(HyDE-DF) is well posed to solve EC-related tasks in the future.

5.4. Differential Evolution

Differential Evolution (DE) ranked second in terms of its objective function value
(42.70) while being comparable to the Dandelion Optimizer (DO) in terms of iterations per
second. Comparatively to the most similar algorithm, the Hybrid Adaptive Differential
Evolution with Decay Function (HyDE-DF), the solution given made less use of load
cut, but it significantly used less of the storage systems, thus barely charging any and
having almost no discharge amount. Furthermore, it exhibited a significant amount of
imports that could potentially be avoided with the aforementioned storage usage. Figure 6
depicts the solution’s temporal evolution of its respective components, which is grouped
according to consumption and generation. Overall, the Differential Evolution algorithm
proved to be an adequate candidate to tackle the proposed problem, thereby comparable



Energies 2024, 17, 2968 13 of 18

to newer methods in computational performance. The termination criteria set was able to
stop the algorithm within a reasonable amount of time and retain good solutions.

Figure 6. (a) Differential Evolution consumption components of best run. (b) Differential Evolution
production components of best run.

5.5. Genetic Algorithm

The Genetic Algorithm (GA) obtained an objective function value of 130.27 on average.
Although the provided solution made extensive use of generators, engaging in both renewable
and non-renewable generators, it did not manage to achieve a state of an absence of load
cut. Storage systems were scarcely used to provide power to the community, thus leaving
room for improvement on that end. In addition, the export value reported is significantly
higher compared to the previous approaches. These factors make it so that the solution is not
satisfactory, as energy generated was not used internally (i.e., to charge storage) but instead
sold to the grid. The breakdown of the resulting solution can be found in Figure 7.

Figure 7. (a) Genetic Algorithm consumption components of best run. (b) Genetic Algorithm
production components of best run.



Energies 2024, 17, 2968 14 of 18

5.6. Particle Swarm Optimization

Particle Swarm Optimization (PSO) achieved the worst average objective function val-
ues among all the benchmarked algorithms, with an average of 198.08. This is reflected in
the solution presented in Figure 8, where non-renewable generators were engaged through-
out the day and mostly used to export energy. This reflects a poor decision process, as the
solution still requires imports to achieve grid balance. Coupled with the generation issues,
the observed run made use of load cutting, thus resulting in an overall poor solution. All
in all, Particle Swarm Optimization (PSO) was not capable of providing a stable alternative
for the presented problem while also being one of the slowest methods.

Figure 8. (a) Particle Swarm Optimization consumption components best run. (b) Particle Swarm
Optimization production components of best run.

6. Discussion

Taking into account all the benchmark results presented thus far, we argue that the
Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF) algorithm is
the most suited for the task proposed. The Hybrid Adaptive Differential Evolution with
Decay Function (HyDE-DF) not only presented good solutions overall but also possesses
the highest speed among all methods. This makes it well suited for time-critical tasks such
as energy balance management. Contrary to the Hybrid Adaptive Differential Evolution
with Decay Function (HyDE-DF), the Mountain Gazelle Optimizer (MGO) had the lowest
iterations per second value, which we attribute to the number of operators executed, as
well as the population growing mechanism. Coupled with the sorting of the expanded
population and the additional evaluation steps, the Mountain Gazelle Optimizer (MGO)
proved to be quite inefficient. Finally, we observed that the Mountain Gazelle Optimizer
(MGO) algorithm quickly stagnated, thus demonstrating a quick descent in objective
function values over the first 1000 iterations but then decreasing just enough to not trigger
an early stopping.

The Dandelion Optimizer (DO) successfully achieved a feasible solution at a glance,
but it was not a practical one. Still, it can be considered a working solution that, with
some minor tweaks, can achieve a good balance between the utilization of all available
resources. The objective function value plot is unusual, thus sharply descending over the
first 1000 iterations, much like the Mountain Gazelle Optimizer (MGO), but suffering from
visible perturbations on its descent over the remaining iterations. This noise was reduced
by the tail end of the iterations. We attribute this behavior to the levy flight embedded into
the landing stage of the method.



Energies 2024, 17, 2968 15 of 18

Differential Evolution (DE) was surprising, especially when compared with the Hy-
brid Adaptive Differential Evolution with Decay Function (HyDE-DF)—a more modern
approach to Differential Evolution (DE). It managed to score objective function values
that were very similar to the Hybrid Adaptive Differential Evolution with Decay Function
(HyDE-DF) within a significantly shorter amount of iterations, thus regularly stopping at
under the 5000 iteration mark. We believe the reasons for this great performance are due to
the small nature of the problem, thereby requiring further testing with a larger population
dimension to assess viability.

The Genetic Algorithm (GA) performed within expectations, thus achieving middling
results. However, we acknowledge that it is a method that scales better with larger popula-
tion values and could attain significantly better results. Due to the benchmark iterations
per second component, the population size needed to be fixed to the mentioned value
of 20, as the number of evaluations within a single iteration scales with the size of the
population and would lead to a more disadvantageous setting for the Genetic Algorithm
(GA) otherwise. With a larger population size, the Genetic Algorithm (GA) could be useful
for solving problems similar to the one tackled with this benchmark.

Particle Swarm Optimization (PSO) did not manage to provide a feasible practical
solution to this problem. While it made use of all the 20,000 iterations, the objective function
value evolution presented stagnant periods, thus indicating that the algorithm was easily
stuck in local optima. In short, we do not believe the Particle Swarm Optimization (PSO)
algorithm is well suited for EC related tasks.

7. Conclusions

This work compared the performance of six different optimization methods—the
Mountain Gazelle Optimizer (MGO), the Dandelion Optimizer (DO), the Hybrid Adap-
tive Differential Evolution with Decay Function (HyDE-DF), the Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and Differential Evolution (DE)—for use in Energy
Communities. The findings presented indicate that the Hybrid Adaptive Differential Evo-
lution with Decay Function (HyDE-DF) method is the most effective optimization method
for this task, as it achieved the best results in terms of both solution quality and iterations
per second. The Hybrid Adaptive Differential Evolution with Decay Function (HyDE-DF)
method is particularly useful for time-sensitive applications, as it had a significantly faster
runtime compared to the other methods considered. These results suggest that the Hybrid
Adaptive Differential Evolution with Decay Function (HyDE-DF) method may be more
widely adopted in energy community optimization scenarios in the future.

However, this study has some limitations that should be taken into account. The effects
of storage degradation required an analysis over a longer time frame, and the presented
results may not generalize to scenarios with a larger number of resources. To address these
limitations, future research should explore the scalability of these methods by increasing
the number of resources considered and by studying the effects of storage degradation
over a longer time frame, as the population size and dimension can skew the results in
favor of certain methods. Additionally, other optimization methods, such as Reinforcement
Learning, could be considered to further improve the operation of Energy Communities.

Overall, our findings suggest that the Hybrid Adaptive Differential Evolution with
Decay Function (HyDE-DF) is a promising tool for optimizing operations in energy com-
munities and that further research should be conducted to understand its potential benefits
and limitations fully.

Author Contributions: Conceptualization, E.G., L.P. and H.M.; methodology, E.G., L.P. and H.M.;
software, E.G.; validation, E.G., L.P., A.E. and H.M.; formal analysis, E.G., L.P. and H.M.; investigation,
E.G., L.P. and H.M.; resources, L.P. and H.M.; data curation, E.G.; writing—original draft preparation,
E.G.; writing—review and editing, E.G., L.P., A.E. and H.M.; visualization, E.G.; supervision, L.P.,
A.E. and H.M. All authors have read and agreed to the published version of the manuscript.



Energies 2024, 17, 2968 16 of 18

Funding: This research received funding from the European Union’s Horizon Europe research and
innovation program under grant agreement no. 101056765. The views and opinions expressed in this
document are, however, those of the authors only and do not necessarily reflect those of the European
Union or the European Climate, Infrastructure, and Environment Executive Agency (CINEA). Neither
the European Union nor the grating authority can be held responsible for them. The authors
received funding from the Portuguese Fundação para a Ciência e a Tecnologia (FCT) under grant
2021.07754.BD (E.G.), CEECIND/01179/2017 (L.P.), UIDB/50009/2020 (L.P., A.E., and E.G.), and
UIDB/50021/2020 (H.M.).

Data Availability Statement: All data referenced in this research work can be found in PyECOM’s
GitHub repository at https://github.com/ECGomes/pyecom (accessed on 11 June 2024).

Acknowledgments: The authors would like to thank the authors of the Hybrid Adaptive Differential
Evolution with Decay Function (HyDE-DF) for providing insight on how to use the method and
potential improvements.

Conflicts of Interest: The authors declare no conflicts of interest. The funding agencies had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc.

2017, 31, 183–212. [CrossRef]
2. European Commission. European Climate Law. 2021. Available online: https://ec.europa.eu/clima/eu-action/european-green-

deal/european-climate-law_en (accessed on 11 June 2024).
3. European Climate Foundation. Roadmap 2050. 2010. Available online: https://climate.ec.europa.eu/eu-action/climate-

strategies-targets/2050-long-term-strategy_en (accessed on 11 June 2024).
4. Jamei, M.; Mones, L.; Robson, A.; White, L.; Requeima, J.; Ududec, C. Meta-Optimization of Optimal Power Flow. In Proceedings

of the ICML 2019 Workshop on Climate Change: How Can AI Help? Long Beach, CA, USA, 14 June 2019.
5. Caramizaru, A.; Uihlein, A. Energy communities: An overview of energy and social innovation. In Scientific Analysis or Review,

Policy Assessment KJ-NA-30083-EN-N; Publications Office of the European Union: Luxembourg, 2020.
6. Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A

review. Renew. Energy 2021, 169, 1138–1156. [CrossRef]
7. Sousa, T.; Soares, T.; Pinson, P.; Moret, F.; Baroche, T.; Sorin, E. Peer-to-peer and community-based markets: A comprehensive

review. Renew. Sustain. Energy Rev. 2019, 104, 367–378. [CrossRef]
8. Otamendi-Irizar, I.; Grijalba, O.; Arias, A.; Pennese, C.; Hernández, R. How can local energy communities promote sustainable

development in European cities? Energy Res. Soc. Sci. 2022, 84, 102363. [CrossRef]
9. Cappellaro, F.; D’Agosta, G.; De Sabbata, P.; Barroco, F.; Carani, C.; Borghetti, A.; Lambertini, L.; Nucci, C.A. Implementing

energy transition and SDGs targets throughout energy community schemes. J. Urban Ecol. 2022, 8, juac023. [CrossRef]
10. Fan, G.; Liu, Z.; Liu, X.; Shi, Y.; Wu, D.; Guo, J.; Zhang, S.; Yang, X.; Zhang, Y. Energy management strategies and multi-objective

optimization of a near-zero energy community energy supply system combined with hybrid energy storage. Sustain. Cities Soc.
2022, 83, 103970. [CrossRef]

11. Pinto, E.S.; Serra, L.M.; Lázaro, A. Energy communities approach applied to optimize polygeneration systems in residential
buildings: Case study in Zaragoza, Spain. Sustain. Cities Soc. 2022, 82, 103885. [CrossRef]

12. Perger, T.; Wachter, L.; Fleischhacker, A.; Auer, H. PV sharing in local communities: Peer-to-peer trading under consideration of
the prosumers’ willingness-to-pay. Sustain. Cities Soc. 2021, 66, 102634. [CrossRef]

13. Javadi, M.S.; Gough, M.; Nezhad, A.E.; Santos, S.F.; Shafie-khah, M.; Catalão, J.P.S. Pool trading model within a local energy
community considering flexible loads, photovoltaic generation and energy storage systems. Sustain. Cities Soc. 2022, 79, 103747.
[CrossRef]

14. Papadimitrakis, M.; Giamarelos, N.; Stogiannos, M.; Zois, E.N.; Livanos, N.A.I.; Alexandridis, A. Metaheuristic search in smart
grid: A review with emphasis on planning, scheduling and power flow optimization applications. Renew. Sustain. Energy Rev.
2021, 145, 111072. [CrossRef]

15. Pop, C.B.; Cioara, T.; Anghel, I.; Antal, M.; Chifu, V.R.; Antal, C.; Salomie, I. Review of bio-inspired optimization applications in
renewable-powered smart grids: Emerging population-based metaheuristics. Energy Rep. 2022, 8, 11769–11798. [CrossRef]

16. Mohamed, A.W.; Sallam, K.M.; Agrawal, P.; Hadi, A.A.; Mohamed, A.K. Evaluating the performance of meta-heuristic algorithms
on CEC 2021 benchmark problems. Neural Comput. Appl. 2023, 35, 1493–1517. [CrossRef]

17. Kumar, A.; Bawa, S. A comparative review of meta-heuristic approaches to optimize the SLA violation costs for dynamic
execution of cloud services. Soft Comput. 2020, 24, 3909–3922. [CrossRef]

18. Abdollahzadeh, B.; Gharehchopogh, F.S.; Khodadadi, N.; Mirjalili, S. Mountain Gazelle Optimizer: A new Nature-inspired
Metaheuristic Algorithm for Global Optimization Problems. Adv. Eng. Softw. 2022, 174, 103282. [CrossRef]

https://github.com/ECGomes/pyecom
http://doi.org/10.1016/j.scs.2017.02.016
https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en
https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en
http://dx.doi.org/10.1016/j.renene.2021.01.078
http://dx.doi.org/10.1016/j.rser.2019.01.036
http://dx.doi.org/10.1016/j.erss.2021.102363
http://dx.doi.org/10.1093/jue/juac023
http://dx.doi.org/10.1016/j.scs.2022.103970
http://dx.doi.org/10.1016/j.scs.2022.103885
http://dx.doi.org/10.1016/j.scs.2020.102634
http://dx.doi.org/10.1016/j.scs.2022.103747
http://dx.doi.org/10.1016/j.rser.2021.111072
http://dx.doi.org/10.1016/j.egyr.2022.09.025
http://dx.doi.org/10.1007/s00521-022-07788-z
http://dx.doi.org/10.1007/s00500-019-04155-4
http://dx.doi.org/10.1016/j.advengsoft.2022.103282


Energies 2024, 17, 2968 17 of 18

19. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering
applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [CrossRef]

20. Lezama, F.; Soares, J.; Faia, R.; Vale, Z. Hybrid-adaptive differential evolution with decay function (HyDE-DF) applied to the
100-digit challenge competition on single objective numerical optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. Association for Computing Machinery, 2019, GECCO’19, Prague, Czech Republic, 13–17
July 2019; pp. 7–8.

21. Storn, R.; Price, K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

22. Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
23. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95—International Conference

on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
24. Fouquet, R. Historical energy transitions: Speed, prices and system transformation. Energy Res. Soc. Sci. 2016, 22, 7–12. [CrossRef]
25. Carley, S.; Konisky, D.M. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5, 569–577.

[CrossRef]
26. York, R.; Bell, S.E. Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable

energy. Energy Res. Soc. Sci. 2019, 51, 40–43. [CrossRef]
27. Directorate-General for Energy (European Commission); Tounquet, F.; Devos, L.; Abada, I.; Kielichowska, I.; Klessmann, C.

Energy Communities; European Union Publications Office: Maastricht, The Netherlands, 2020.
28. Gui, E.M.; MacGill, I. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges.

Energy Res. Soc. Sci. 2018, 35, 94–107. [CrossRef]
29. Tina, G.M.; Ventura, C.; Ferlito, S.; De Vito, S. A State-of-Art-Review on Machine-Learning Based Methods for PV. Appl. Sci. 2021,

11, 7550. [CrossRef]
30. Morais, H.; Kádár, P.; Faria, P.; Vale, Z.A.; Khodr, H.M. Optimal scheduling of a renewable micro-grid in an isolated load area

using mixed-integer linear programming. Renew. Energy 2010, 35, 151–156. [CrossRef]
31. Hashmi, M.U.; Pereira, L.; Bušić, A. Energy storage in Madeira, Portugal: Co-optimizing for arbitrage, self-sufficiency, peak

shaving and energy backup. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6.
32. Gomes, L.; Morais, H.; Gonçalves, C.; Gomes, E.; Pereira, L.; Vale, Z. Impact of Forecasting Models Errors in a Peer-to-Peer Energy

Sharing Market. Energies 2022, 15, 3543. [CrossRef]
33. Gomes, E.; Pereira, L. PB-NILM: Pinball Guided Deep Non-Intrusive Load Monitoring. IEEE Access 2020, 8, 48386–48398.

[CrossRef]
34. Lorenzi, G.; Silva, C.A.S. Comparing demand response and battery storage to optimize self-consumption in PV systems. Appl.

Energy 2016, 180, 524–535. [CrossRef]
35. Faia, R.; Soares, J.; Vale, Z.; Corchado, J.M. An Optimization Model for Energy Community Costs Minimization Considering a

Local Electricity Market between Prosumers and Electric Vehicles. Electronics 2021, 10, 129. [CrossRef]
36. Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garcia, C.; Luchetta, A. Optimal Battery Energy Storage System Scheduling within

Renewable Energy Communities. Energies 2021, 14, 8480. [CrossRef]
37. Denysiuk, R.; Lilliu, F.; Recupero, D.; Vinyals, M. Peer-to-peer Energy Trading for Smart Energy Communities. In Proceedings of

the Proceedings of the 12th International Conference on Agents and Artificial Intelligence, Valletta, Malta, 22–24 February 2020;
pp. 40–49.

38. Reis, I.F.; Gonçalves, I.; Lopes, M.A.; Antunes, C.H. Business models for energy communities: A review of key issues and trends.
Renew. Sustain. Energy Rev. 2021, 144, 111013. [CrossRef]

39. Hahnel, U.J.J.; Herberz, M.; Pena-Bello, A.; Parra, D.; Brosch, T. Becoming prosumer: Revealing trading preferences and
decision-making strategies in peer-to-peer energy communities. Energy Policy 2020, 137, 111098. [CrossRef]

40. Tostado-Véliz, M.; Kamel, S.; Hasanien, H.M.; Turky, R.A.; Jurado, F. Optimal energy management of cooperative energy
communities considering flexible demand, storage and vehicle-to-grid under uncertainties. Sustain. Cities Soc. 2022, 84, 104019.
[CrossRef]

41. Abbassi, R.; Saidi, S.; Abbassi, A.; Jerbi, H.; Kchaou, M.; Alhasnawi, B.N. Accurate Key Parameters Estimation of PEMFCs’
Models Based on Dandelion Optimization Algorithm. Mathematics 2023, 11, 1298. [CrossRef]

42. Abbassi, R.; Saidi, S.; Urooj, S.; Alhasnawi, B.N.; Alawad, M.A.; Premkumar, M. An Accurate Metaheuristic Mountain Gazelle
Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models. Mathematics 2023, 11, 4565. [CrossRef]

43. Gomes, E.; Pereira, L.; Morais, H. Energy Resources Scheduling in Energy Communities: A comparison between Mixed Integer
Linear Programming and Hybrid-adaptive Differential Evolution with decay function. In Proceedings of the 2023 IEEE PES
Innovative Smart Grid Technologies Europe (ISGT EUROPE), Grenoble, France, 23–26 October 2023; pp. 1–5.

44. Tenfen, D.; Finardi, E.C.; Delinchant, B.; Wurtz, F. Lithium-ion battery modelling for the energy management problem of
microgrids. IET Gener. Transm. Distrib. 2016, 10, 576–584. [CrossRef]

45. Price, K.V. Differential Evolution. In Handbook of Optimization: From Classical to Modern Approach; Intelligent Systems Reference
Library; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–214.

46. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Natural Computing Series;
Springer: Berlin/Heidelberg, Germany, 2005.

http://dx.doi.org/10.1016/j.engappai.2022.105075
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1016/j.erss.2016.08.014
http://dx.doi.org/10.1038/s41560-020-0641-6
http://dx.doi.org/10.1016/j.erss.2019.01.008
http://dx.doi.org/10.1016/j.erss.2017.10.019
http://dx.doi.org/10.3390/app11167550
http://dx.doi.org/10.1016/j.renene.2009.02.031
http://dx.doi.org/10.3390/en15103543
http://dx.doi.org/10.1109/ACCESS.2020.2978513
http://dx.doi.org/10.1016/j.apenergy.2016.07.103
http://dx.doi.org/10.3390/electronics10020129
http://dx.doi.org/10.3390/en14248480
http://dx.doi.org/10.1016/j.rser.2021.111013
http://dx.doi.org/10.1016/j.enpol.2019.111098
http://dx.doi.org/10.1016/j.scs.2022.104019
http://dx.doi.org/10.3390/math11061298
http://dx.doi.org/10.3390/math11224565
http://dx.doi.org/10.1049/iet-gtd.2015.0423


Energies 2024, 17, 2968 18 of 18

47. Brest, J.; Zamuda, A.; Boskovic, B.; Maucec, M.S.; Zumer, V. Dynamic optimization using Self-Adaptive Differential Evolution. In
Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 415–422.

48. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
49. Lezama, F. HyDEDF_Source. 2021. Available online: https://github.com/fernandolezama/HyDEDF_Source (accessed on 11

June 2024).
50. Stork, J.; Eiben, A.E.; Bartz-Beielstein, T. A new taxonomy of global optimization algorithms. Nat. Comput. 2022, 21, 219–242.

[CrossRef]
51. Gomes, E.; Pereira, L.; Esteves, A.; Morais, H. PyECOM: A Python tool for analyzing and simulating Energy Communities.

SoftwareX 2023, 24, 101580. [CrossRef]
52. Blank, J.; Deb, K. pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [CrossRef]
53. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
https://github.com/fernandolezama/HyDEDF_Source
http://dx.doi.org/10.1007/s11047-020-09820-4
http://dx.doi.org/10.1016/j.softx.2023.101580
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/10.1109/4235.996017

	Introduction
	Background and Related Work
	Energy Community Formulation
	Materials and Methods
	Algorithms
	Differential Evolution
	Hybrid Adaptive Differential Evolution with a Decay Function (HyDE-DF)
	Genetic Algorithm
	Particle Swarm Optimization
	Mountain Gazelle Optimizer
	Dandelion Optimizer

	Tools
	Encoding and Solution Handling
	Hyperparameter Settings
	Evaluation Procedure

	Results
	MGO
	DO
	HyDE-DF
	Differential Evolution
	Genetic Algorithm
	Particle Swarm Optimization

	Discussion
	Conclusions
	References

