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Abstract

This paper presents a probabilistic forecasting ap-
proach tailored for low voltage (LV) substations, offer-
ing short-term predictions for three crucial variables:
voltage, reactive power, and active power. These pa-
rameters play a vital role in the resilience of distribu-
tion systems, especially in the presence of Distributed
Energy Resources (DERs). Evaluation with simulated
data shows that active and reactive power forecasts de-
grade notably with higher EV penetration, whereas volt-
age forecasting experiences less degradation across all
scenarios.

1. INTRODUCTION

The power grid is undergoing a significant transfor-
mation driven by the critical goal of mitigating climate
change. This energy transition has led to a surge in
the diversity and integration of Distributed Energy Re-
sources (DER)s, such as Renewable Energy Source
(RES), Electric Vehicle (EV)s, and Battery Energy Stor-
age System (BESS), into the Low Voltage (LV) distribu-
tion network. While DERs integration presents exciting
opportunities to enhance LV resilienc, it also introduces
significant challenges. LV resilience refers to the net-
work’s ability to withstand and recover from disruptions
while maintaining reliable and high-quality power deliv-
ery [1].

Specifically, the proliferation of Photovoltaic (PV) sys-
tems, can lead to periods of excess generation, creating
a ”duck curve” in the net-load profile [2]. This overgen-
eration can cause power quality fluctuations, voltage
swings, or grid stress. Concurrently, increasing peak
demand from the growing number of EVs and Electric
Heating Systems (EHS) leads to congestion, especially
during peak hours [3], [4]. This results in increased
power losses, phase imbalances, overloading, and volt-
age drops, potentially causing outages.

Despite these challenges, well-managed DERs can
improve LV resilience. For instance, RES with BESS
[5], [6] or Vehicle to Grid (V2G) technology [7] can pro-
vide backup power during outages [8] or help control

peak demands [5] or voltage fluctuation [9].Additionally,
with more DERs, the grid becomes less reliant on a sin-
gle point of failure, such as a large power plant outage.

Effective management of DERs for resilience im-
provement depends on the ability to predict future de-
mand and generation and use this prediction to make
informed decisions and control strategies. As such,
forecasting demand and generation is the key to en-
hancing resilience in LV power grids amid the energy
transition. More precisely, to ensure the resilience
of LV distribution systems, Distribution System Opera-
tor (DSO)s need comprehensive insights into voltage,
reactive power, and active power [10], [11]. Voltage
forecasts help anticipate and mitigate potential issues
through proactive regulation strategies [10], while reac-
tive and active power forecasts identify peak demand
periods, load imbalances, and potential overloads [11].

Most existing forecasting methods in power systems
rely on univariate point forecasts, which predict a sin-
gle value without estimating inherent uncertainty. This
lack of uncertainty quantification can lead to suboptimal
decision-making and increased risks in LV system op-
erations [12]. Additionally, these methods require sep-
arate models for each target variable (voltage, reactive
power, and active power), which, besides being ineffi-
cient and resource-intensive, fail to capture the interde-
pendencies between variables [13].

To address these challenges, this paper presents a
novel framework for producing multivariate probabilis-
tic forecasts of three critical, interdependent variables
at LV substations: voltage, reactive power, and ac-
tive power. Our approach leverages a lightweight neu-
ral network architecture inspired by [12] to capture the
quantile distribution of these variables. This enables
highly accurate, very short-term, and short-to-medium-
term forecasts that account for prediction uncertainty.

The proposed framework is evaluated through a se-
ries of simulated low-voltage (LV) secondary substation
scenarios, each featuring varying combinations of pho-
tovoltaic (PV) and electric vehicle (EV) penetration lev-
els. This approach facilitates a comprehensive assess-
ment of the impacts of PV and EV integration on fore-
casting performance.



2. METHODS

We leverage neural network-parameterised Quantile re-
gression (QR) regression to generate probabilistic fore-
casts. QR is an effective non-parametric method for
estimating uncertainty in load forecasting, capable of
modeling complex distributions without assuming an
underlying data distribution [12], [14].
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t = {1 . . .H} and m = {1 . . .M} equal to the number
of variables being predicted which is 3 in this case.
Qθ (τ) is N ×H ×M quantile functions characterised by
p(x≤Qθ (τ)). Thus QR quantifies predictive uncertainty
by providing a prediction interval [Qθ (τtmL),Qθ(τU

tm)],
which includes lower (L) and upper (U) quantile bounds
within which predictions are expected to fall.

The proposed multivariate QR approach leverages
a Scalable Multilayer Perceptron Forecasting (MLPF),
building upon the work presented in [12], to learn quan-
tile fractions and their associated values. This enables
the generation of forecasts along with their predictive
uncertainty as illustrated in Fig. 1. Users simply specify
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Figure 1: The full parameterised QR with two neu-
ral network blocks, namely Quantile Value Network
(QVN) and Fraction Proposal Network (FPN), which
jointly learn both the quantile values and quantile frac-
tions. φ(h f ), is the feature representation, obtained
from MLPF encoders.

the desired number of quantiles, and the model auto-
matically learns the optimal quantile probability ˆτtm and
corresponding values Qθ (τ̂tm) that best characterize the
forecasted variables.

3. EXPERIMENTAL DESIGN

3.1. Simmulation of Scenarios

We implemented a simulation of a four-feeder LV sys-
tem using the Hybrid European MV–LV Network Mod-
els [15]. Simulated data was generated for 365 days,
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Figure 2: 5-folds cross backtesting cross validation

with a sample interval of 30 minutes. The OpenDSS
simulator was employed in a time series model for the
simulations.

Multiple simulation runs were conducted with vary-
ing DER adoption rates. Specifically, the adoption rates
for photovoltaic (PV) and electric vehicle (EV) systems
were independently varied across the following values:
0%, 20%, 40%, 60%, and 80%. For each end con-
sumer in the LV network, we assumed a PV system
with a 3 kVA inverter rated for a maximum output power
of 3 kW. Real-trace data of normalized PV generation
recorded from households in the AusNet grid1 was used
as input to the PV system. Similarly, a real EV charg-
ing power trace obtained from [16] was used to repre-
sent EV charging behavior and its impact on the LV net-
works. Additionally, real power trace data recorded from
households in the AusNet grid was used to create the
baseline power consumption profile of each connected
end consumer.

3.2. Training and Testing Procedures

For training and testing the proposed forecasting meth-
ods, this work uses a 5-folds back-testing cross-
validation with an expanding window as illustrated in
Fig. 2. For this set-up we set the initial historical period
to at least 6 months and the fixed future time window is
set to 2 months [17]. The sliding window is extended by
1 month as we move forward in the time series. Each
model is trained on 90% of the training window for 100
iterations and validated on the remaining 10%.

We assess the forecasting performance using Sym-
metric Mean Absolute Percentage Error (SMAPE) and
Coverage Width and Forecasting Error based metric
(CWE) metrics. SMAPE is the point forecast point met-
ric expressed as a percentage defined as

SMAPE =
1
T

t=T

∑
t=1

2|ŷt − yt |
(|yt |+ |ŷt |)

(3)

Unlike other percentage metrics like Mean Absolute
Percentage Error (MAPE), SMAPE treats overestima-
tion and underestimation equally by using the sum of
actual and predicted values as the scaling factor, mak-
ing it a more balanced measure than other metrics.
SMAPE is bounded between 0 and 2, with 0 represent-
ing the best performance and 2 indicating the poorest
performance.

1https://www.ausnetservices.com.au/
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On the other hand, the CWE metric introduced in
[17] is a probabilistic metric that incorporates two es-
sential elements of probabilistic forecast: Predictive
Interval Coverage Probability (PICP) and Normalized
Mean Prediction Interval width (NMPI). NMPI (Eq. (4))
measures the average width (sharpness) of the predic-
tion interval, whereas PICP measures the proportion of
times that the observed value falls within the predicted
interval.
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where CL
t and CU

t represent lower and upper predictive
intervals and R=max{y1, . . .yH}. The CWE metric is de-
fined as the harmonic mean between γpcip a measures
that quantify the misscoverage rate from the ideal cov-
erage probability 1−α and γnmpi a measures of devia-
tion from the ideal predictive interval width (efficiency).

CWE = 2
γnmpi · γpcip

γpicp + γnmpi
(6)

where:
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∆picp −α

1−α
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{
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1 otherwise
(8)
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4. RESULTS

The forecasting results are presented in Figs. 3 to 5.
The study reveals that for active power (Fig. 3), the
impact on forecasting performance tends to stabilize
after 20% PV penetration compared to the initial in-
crease from zero to 20%. Concerning Q (Fig. 4), the
impact of increasing PV on forecasting performance is
much smaller, with values around 0.25 SMAPE, inde-
pendently of the PV generation rates.

It can also be observed that both active and reactive
power forecasts degrade more rapidly with increased
EV penetration, particularly at 80% EV penetration,
where the error approaches 0.75 SMAPE. Higher EV
penetration also leads to a decrease in conditional
weighted error (CWE), making predictive intervals less
conclusive. Interestingly, beyond 20% penetration of
PV and EV, CWE exhibits similar degradation despite
the more pronounced decrease in forecasting perfor-
mance.

Regarding voltage (Fig. 5), the forecasting quality is
less affected by increased PV but deteriorates faster

with more EVs, although the variation in CWE remains
moderate, indicating a balanced predictive interval. No-
tably, even with zero PV, having over 20% EVs can sig-
nificantly impair voltage forecasting performance.
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Figure 3: Variation of performance for active power.
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Figure 4: Variation of performance for reactive power.
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Figure 5: Variation of performance for voltage.

To further illustrate the voltage forecasting results,
Fig. 6 presents the outcomes for the 80% PV - 80%
EV scenario over a seven-day period. It becomes evi-
dent that there is a significant daily voltage drop, which
the forecasting model occasionally fails to capture fully.
Still, it is important to remark that the predictive inter-
val often includes the true value, as expected per the
results of CWE in Fig. 5.

5. CONCLUSION

The paper presents a framework for multivariate proba-
bilistic forecasting of active power, reactive power, and
voltage in LV secondary substations, evaluated across
simulated scenarios with varying PV and EV penetra-
tion levels. Results indicate significant degradation in
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Figure 6: Seven days of voltage forecast in the 80% PV
and EV penetration scenario.

active and reactive power forecasts with higher EV pen-
etration, particularly at 80% levels, while voltage fore-
casting is less affected by PV but declines with in-
creased EV penetration. Future work should include
empirical validation to better understand real-world sys-
tem responses and enhance forecasting accuracy and
resilience assessment.
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