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Abstract

Energy transition is a major goal for humanity to miti-
gate climate change. Transportation is one of the sec-
tors that should contribute the most to the reduction of
greenhouse gas emissions. Shore Side Energy is pro-
posed as one of the main approaches to reduce the
emissions of vessels when they are docked. Never-
theless, several improvements should be made in ports
to achieve optimal management of energy, considering
the needs of vessels. To achieve this goal, accurate
forecasting tools need to be used. In the present pa-
per, a forecasting framework to be used in ports is de-
scribed, and some results are presented. The proposed
framework will be used in a European project, Shift2DC.

1. INTRODUCTION

In the European Union, maritime transport was respon-
sible for the emission of 124.3 million tonnes of CO2
in 2021 [1]. In July 2023, the International Maritime
Organization (IMO) defined new targets for reducing
greenhouse gas (GHG) emissions in maritime trans-
portation, formulating and adopting a set of measures
by 2025 to achieve these reduction targets [2]. Accord-
ing to the FuelEU Maritime regulation [3], by 2030, con-
tainer and passenger ships (including cruise ships) with
a gross tonnage equal to or exceeding 5,000 must uti-
lize shore power connections when docked at major EU
ports designated within the trans-European transport
network (TEN-T) [4].

In the Shift2DC project’, a digital twin of the Port of
Madeira will be developed, allowing the assessment of
the impact of shore power on the global energy sys-
tem of Madeira Island. The proposed architecture in-
cludes several layers, from data acquisition, consump-
tion monitoring, and cruise power consumption moni-
toring to DC grid simulation, intelligent control strate-
gies, and Al tools. Beyond the implemented framework,
several scenarios will be tested, considering the global
management of the port, the possibility of providing grid
services supporting the system operator, the possibility
of operating the port as a microgrid, and finally, the de-
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velopment of a scenario where the port is considered
an energy hub with multiple energy vectors. In all the
proposed scenarios, grid reliability will be taken into ac-
count.

All the mentioned scenarios will be tested, consid-
ering the use of alternating current (AC) grids and the
assessment of using direct current (DC) grids. The use
of DC distribution grid solutions in ports can bring sev-
eral advantages to improve both flexibility and energy
efficiency. There are numerous applications in ports
where DC systems can offer various advantages. One
of the most important points in ports is that the ships
can operate at 50 Hz, 60 Hz, or in DC. This means that
several levels of conversion will be required. Consid-
ering the installation of photovoltaic (PV) and battery
storage systems in the port, the DC solution is seen as
an interesting alternative.

The use of DC systems in ports can significantly en-
hance port operation efficiency by eliminating conver-
sion losses between AC and DC. DC grids should pri-
marily be used to connect shore-side power, batteries,
charging stations, and PV systems. However, some
loads can also operate directly on DC.

In the present paper, forecasting needs to simulate
the ports are described. The main challenge can be
the forecasting of the power needs of the ships that
will be docked in the Port. Afterwards, some results
obtained from the proposed forecasting framework are
presented. Beyond the need to forecast the power de-
mand of the ports and the PV generation, it is important
to forecast the power consumption of the ships. Con-
sidering the characteristics of the Port of Madeira, most
of the ships are large cruise ships that are docked for
an average period of 12 hours. To develop the power
consumption forecast for these ships, a transfer learn-
ing methodology has been developed, considering the
behavior of previous cruises and some features of the
cruises that will be docked in the port the following day.

2. FORECASTING FRAMEWORK

The forecasting framework for the Shift2DC project in-
volves several crucial steps to ensure accurate and
reliable predictions of power demand and generation.



This framework encompasses data acquisition, pre-
processing, feature engineering, feature selection, fore-
casting methods, and validation.

2.1. Data Acquisition

Data acquisition is the foundational step of the fore-
casting process. In the Shift2DC project, data will
be collected from various sources, including historical
power consumption of ships, PV generation data from
installed systems, and environmental factors such as
weather data. This data is sourced from sensors, smart
meters, and external open-source datasets, ensuring
comprehensive coverage of all variables influencing the
energy dynamics at the port.

2.2. Pre-processing

The raw data obtained through acquisition often con-
tains noise, missing values, and inconsistencies. The
preprocessing will include data cleaning, handling miss-
ing values through imputation techniques, and normal-
izing data to a common scale. This ensures the data is
in a suitable format for further analysis and modeling.

2.3. Feature Engineering and Selection

Feature engineering involves creating new features
from the existing data to improve the performance of
forecasting models. In the context of the port's en-
ergy system, relevant features might include date-time
features like the hour, day of the week, or season,
ship characteristics, and historical power usage pat-
terns (lag features). These features are crafted to cap-
ture the underlying patterns and relationships in the
data.

Afterwards, it is needed to identifying the most rel-
evant features that contribute to forecasting accuracy
(Feature selection). Techniques such as correlation
analysis and feature importance scores from tree-
based models will be employed to select the number
and subset of features that provide the best perfor-
mance in forecasting.

2.4. Forecasting Methods

Various forecasting methods will be implemented to
predict power consumption and generation. The project
utilizes traditional machine learning algorithms such as
Random Forest and XGBoost, as well as advanced
neural network architectures. Transfer learning is em-
ployed to enhance the model’s ability to generalize from
one domain to another, leveraging knowledge from pre-
vious cruise ships’ power consumption patterns.

2.5. Transfer Learning

Transfer learning is particularly useful in scenarios
where the target data is limited [5]. By using a pre-
trained model on a related task, it is possible to trans-

fer learned features to improve the forecasting of power
consumption for new ships docking at the port. This
approach significantly enhances prediction accuracy by
leveraging the behavioral patterns of previously docked
ships.

2.6. Validation

Model validation is crucial to ensure the reliability of the
forecasting models. Cross-validation techniques, such
as k-fold validation, will be used to assess the model’s
performance. Metrics like Mean Absolute Error (MAE)
and Normalized Root Mean Square Error (RMSE) will
be calculated to evaluate the accuracy of the predic-
tions.

3. FORECASTING NEEDS FOR SHORE POWER
INFRASTRUCTURES

Forecasting needs in ports can be divided into elec-
tric power consumption and electric power generation.
Concerning power consumption, it is possible to split it
into three main categories: the power consumption of
buildings, the power consumption of electric vehicles,
and the power consumption of boats. Power genera-
tion will depend on the type of technology installed in
the ports. Finally, considering the impact of ports on
the global power systems, it can be interesting to es-
timate the global power profiles of the ports. A short
description of each type of forecasting is presented in
the following subsections.

3.1. Port Power Consumption

Ports can present different organizations depending on
the type and size of vessels that will be docked. One of
the main challenges is the lack of monitoring systems
allowing the use of historical data. In the SHIFT2DC
project, all the distribution boards in Madeira Port will
be monitored through the use of smart meters. Along-
side a detailed characterization of the loads installed
in each distribution board, it will be possible to create a
historical dataset and to estimate the available flexibility
in each board.

3.2. Electric Vehicles Consumption

Beyond the ’'natural’ power consumption of the build-
ings, electric vehicles (EVs) can have a significant im-
pact on the consumption profiles of ports in the near
future. EVs exhibit specific behavior, primarily depend-
ing on the power installed in each charging station. An-
other interesting characteristic of EVs is their capability
to provide flexibility to the system, which is greater if
vehicle-to-grid technology is available [6].

3.3. Ships

Finally, it is important to consider the forecasting of
the power demand of ships. Depending on the type



of ports and vessels, the power consumption of a ship
can vary greatly [7]. For example, when ports are used
for electric ferries, the power consumption will depend
on the ferry scheduling. In such cases, high accuracy
in the forecasting process is expected due to the pre-
dictable nature of ferry operations. On the other hand,
ports used for cruises may face challenges due to vary-
ing ship sizes, technical characteristics, and passenger
numbers, even for the same cruise line. To address
these challenges, innovative methods based on trans-
fer learning and federated learning will be tested.

3.4. Electric Power Generation in Ports

The main aim of a port is not only to supply energy to
vessels but mainly to provide green energy. This means
that the port should have (or buy) electricity generated
through renewable technologies such as photovoltaic or
wind generators. In both cases, forecasting will be used
based on several features, mainly related to historical
data and weather forecast data. The accuracy of fore-
casting is typically higher for photovoltaic systems.

3.5. Port Power Demand Profiles

The estimation of global power demand profiles will be
critical not only for the operators of the port but mainly
for the system operators. These profiles will integrate all
the other forecast results but also intelligent scheduling
algorithms that will be used to take advantage of the
existing flexibility in the port. This flexibility can be pro-
vided by different loads, as already mentioned, but also
by energy storage systems such as batteries or boilers.

4. RESULTS

To provide an initial overview of the forecasting frame-
work and implementation, a preliminary study on PV
power production forecasting was conducted for a res-
idential house in Madeira. This initial effort demon-
strates some of the steps and methodologies that will
be applied to the port’s energy system once specific
data have been collected.

The available data for the analyzed house includes
power consumption records spanning two and a half
years (2019-2021). In addition to power consumption
data, weather data including temperature, Global Hori-
zontal Irradiance (GHI), Direct Normal Irradiance (DNI),
Diffuse Horizontal Irradiance (DHI), etc., was obtained
for the same period based on the house’s coordinates.

For feature engineering, date time features such as
hour, day of the week, month, and season and lag fea-
tures (past values of power) for one day, seven days
(week), and 30 days (month) were extracted.

Figure 1 present the Pearson correlation obtained for
each feature. After feature selection, the final set of
features used for the forecasting include the radiation
features, the three lag features and the hour.
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Figure 1: Feature correlation with PV power production

For training and testing the models, the data was split
into training and testing sets. Since the forecast hori-
zon defined corresponds to the day ahead, the training
set consists of data from 2019 up to January 13, 2021,
while the testing set includes the data for January 14,
2021. This split ensures that the models are trained on
historical data and evaluated on future data, mimicking
real-world forecasting scenarios. Figure 2 shows the
time series of PV power production in the residential
house, and illustrates the train and test split used in this
case.
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Figure 2: Train and Test Split for PV Power Forecasting

Two machine learning methods were implemented
to predict the PV power production: Random Forest
(RF) and XGBoost. The models were evaluated us-
ing Mean Absolute Error (MAE) and Normalized Root
Mean Square Error (NRMSE). The results obtained
indicate that XGBoost outperformed Random Forest
in both MAE and NRMSE metrics, in fact XGBoost
achieved a MAE of 108.09 W and an NRMSE of 5.91%,
while Random Forest achieved a MAE of 116.50 W and
an NRMSE of 6.88%.

Figure 3 and Figure 4 present the comparison be-
tween the predictions (in blue) and the actual values (in
red) achieved by Random Forest and XGBoost, respec-
tively.

One possible reason for XGBoost's superior perfor-
mance is its ability to handle complex relationships and



Real vs predicted PV power production using Random Forest

3500 - Real

Predicted
3000 -
2500 -

2000 -

Power (W)

1500 -

1000 -

500 -

Figure 3: Predicted vs actual PV power generation for
Random Forest

Real vs predicted PV power production using XGBOOST
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Figure 4: Predicted vs actual PV power generation for
XGBoost

interactions between features through gradient boost-
ing. This method incrementally builds an ensemble of
trees, where each tree corrects the errors of the previ-
ous one. This can lead to better capture of non-linear
patterns in the data, which is crucial for accurate PV
power production forecasting. Random Forest, on the
other hand, builds multiple decision trees independently
and averages their results. While it is robust and effec-
tive for many applications, it might not capture intricate
dependencies as well as XGBoost, leading to slightly
higher prediction errors.

These initial results illustrate the effectiveness of the
forecasting approach and provide a blueprint for the
process that will be followed for the port’s energy sys-
tem. Once the specific data for the port is acquired,
it will be implemented a similar methodology to fore-
cast the power consumption of ships and overall energy
demand at the port. The integration of different meth-
ods such as Random Forest, XGBoost, and neural net-
works will be evaluated, and their performance will be
compared to determine the optimal forecasting method
for the port’s energy hub scenario.
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6. CONCLUSION

The present paper introduces a forecasting framework
intended for use in ports. The main aim of this tool is
to generate accurate information to enable better man-
agement of electric energy through optimal scheduling
of the port’s power resources. The proposed framework
includes all components of machine learning, such as
data acquisition, feature selection, forecasting, and val-
idation. This process is applied independently for dif-
ferent forecasting needs. Subsequently, features and
forecasting algorithms are selected based on the char-
acteristics of each requirement. The final outcome of
this process will be an accurate estimation of the global
power demand of the port for the next hours/days.

CIRED Workshop on Resilience of Electric Distribution
Systems, Chicago, November 7-8, 2024
Paper n° 258

References

[1] E. Commission, Fourth annual report from the eu-
ropean commission on COZ2 emissions from mar-
itime transport (period 2018-2021), 2023.

[2] E. Commission, Reducing emissions from the
shipping sector, 2023.

[8] E.Commission, FuelEU maritime regulation, 2023.

[4] I. C. on Clean Transportation, Shore power needs
and CO2 emissions reductions of ships in euro-
pean union ports: Meeting the ambitions of the Fu-
elEU maritime and AFIR, 2023.

[5] Y. Gao, Y. Ruan, C. Fang, and S. Yin, “Deep learn-
ing and transfer learning models of energy con-
sumption forecasting for a building with poor in-
formation data,” Energy and Buildings, vol. 223,
p. 110156, 2020.

[6] H. Morais, “New approach for electric vehicles
charging management in parking lots considering
fairness rules,” Electric Power Systems Research,
vol. 217, p. 109107, 2023, 1ISSN: 0378-7796.

[71 S. B. Dalsgren, M. S. Eide, &. Endresen, A.
Mjelde, G. Gravir, and |. S. A. Isaksen, “Update on
emissions and environmental impacts from the in-
ternational fleet of ships: The contribution from ma-
jor ship types and ports,” Atmospheric Chemistry
and Physics, vol. 9, no. 6, pp. 2171-2194, 2009.



	Introduction
	Forecasting Framework
	Data Acquisition
	Pre-processing
	Feature Engineering and Selection
	Forecasting Methods
	Transfer Learning
	Validation

	Forecasting Needs for Shore Power Infrastructures
	Port Power Consumption
	Electric Vehicles Consumption
	Ships
	Electric Power Generation in Ports
	Port Power Demand Profiles

	Results
	Acknowledgement
	Conclusion

