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ABSTRACT Energy consumption profiles are a critical component of energy management strategies.
With the recent widespread adoption of smart meters, there is a pressing need to develop robust
methodologies for obtaining, characterizing, and visualizing these profiles. This paper presents a
comparative analysis of various clustering methods for deriving consumer electricity profiles, aiming to
identify the most suitable techniques for big time-series data and to evaluate how the granularity of the data
influences the final profiles. Four approaches were considered for obtaining house electricity consumption
profiles: K-means, Principal Component Analysis (PCA) combined with K-means, Self-Organizing Maps
(SOM), and SOM combined with K-means. Additionally, an iterative study with the scores silhouette
coefficient and Davies-Bouldin index validated the subjective indications from the elbow method. The
results demonstrate that hybrid approaches offer superior performance compared to conventional clustering
models, highlighting the effectiveness of combining PCA and SOM in improving model generalization
and supporting more targeted energy management strategies. SOM combined with K-means provides the
best clustering quality across all tested scenarios, making it the preferred method when computational
resources are not a limiting factor. On the other hand, PCA combined with K-means highlights a good
balance between meaningful profiles and the capacity to handle large datasets effectively.

INDEX TERMS Clustering, Consumption profile, Dimensionality reduction, Time-series data.

I. INTRODUCTION

THE increasing electrification of modern society is re-
shaping how energy is consumed and managed, driven

by sustainability goals and technological advancements.
Buildings are at the center of this transformation, accounting
for approximately 28% of total final energy consumption
worldwide in 2023 [1], while households, in particular,
are becoming more energy-dependent due to the growing
adoption of electric heating, cooling, and smart appliances.
Enhancing energy efficiency and reducing carbon emissions
in this sector remain critical priorities, requiring a deeper

understanding of electricity consumption patterns to support
more sustainable energy management strategies.

The widespread deployment of smart meters in residen-
tial, commercial, and industrial buildings has revolutionized
electricity monitoring [2], [3]. Instead of relying on tradi-
tional subjective surveys, data collection has shifted to real-
time, high-resolution measurements, enabling more accurate
analysis of energy usage [4]. This big data has facilitated the
development of advanced consumption profiling techniques,
allowing the identification of behavioral patterns and the
optimization of energy management strategies. For example,
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with the data provided by smart meters, electricity providers
can design personalized demand response (DR) programs
promoting peak load reduction [5], improving system relia-
bility, load forecasting [6], [7], grid planning, and designing
of time-of-use tariffs tailored to typical consumption behav-
iors [8]. In the context of electric mobility, such data can
enhance smart charging strategies by aligning EV charging
with household routines and grid constraints [9], [10].

A fundamental concept in this context is consumption
profiles, which aim to analyze and identify statistically
representative electricity consumption patterns over different
timeframes, such as a day (24 hours), a week, a season, or
even a year. These profiles are typically derived from time-
series data with resolutions ranging from one minute to one
hour, being applied at various scales, including individual
households, buildings, or even entire neighborhoods [11].
They provide crucial insights into typical consumption be-
haviors and how electricity use fluctuates over time.

As buildings and homes become increasingly integrated
into the energy system, their role in achieving sustainability
goals becomes even more significant. The adoption of
demand response programs and cost-reflective electricity
pricing has gained traction, encouraging consumers to adapt
their consumption habits in response to grid conditions
and price signals. Understanding how these consumption
profiles are identified and classified is essential to support
the transition to a more sustainable and intelligent energy
system, where buildings and homes actively contribute to
energy flexibility and decarbonization efforts.

A. RELATED WORKS
As verified in several studies [12]–[14], these consumption
profiles are typically obtained using clustering methods.
They serve as the foundation for numerous applications,
including load forecasting [6], tariff design [8], and demand-
side management [9]. For instance, Satre Meloy et al. [15]
started clustering residential electricity consumption using
K-means and Hierarchical clustering on cumulative con-
sumption profiles of high temporal resolution (1 second)
during evening peak hours. This approach identified two
distinct demand patterns, linking them to occupant behaviors
like cooking and appliance use. The main part of the
methodology used predictive models, such as elastic net
logistic regression and random forests, to further connect
these clusters to activities, providing actionable insights for
improving demand-side flexibility and reducing peak loads.
On the other hand, Khan et al. [16] proposed a spatial-
temporal framework for short-term electricity consumption
forecasting in residential buildings. The model integrates
K-means clustering with a hybrid distance metric to seg-
ment apartments based on consumption patterns into low,
medium, and high clusters. Clustered data is then aggregated
to reduce variability and enhance prediction accuracy. The
forecasting component combines Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU) in a stacked
ensemble approach to optimize predictions. The results

demonstrate superior performance compared to conventional
machine learning (ML) and deep learning (DL) models,
highlighting the effectiveness of clustering in improving
model generalization and supporting more targeted energy
management strategies.

However, most of these studies paid limited attention to
the definition and selection of consumption profiles. Given
their critical role in understanding consumption patterns
and consumer behavior, it is essential to establish robust
methodologies for obtaining, characterizing, and visualizing
these profiles. With that in mind, Michalakopoulos et al. [17]
presented a comprehensive ML framework for clustering
residential electricity consumption profiles to optimize DR
programs. The authors compared multiple clustering al-
gorithms, including K-means, K-medoids, Hierarchical ag-
glomerative clustering, and DBSCAN, using evaluation met-
rics such as the silhouette score, Davies–Bouldin index, and
Calinski–Harabasz index to determine the optimal number
of clusters. The framework also incorporates probabilistic
classification using CatBoost and eXplainable Artificial In-
telligence (xAI) techniques to enhance the interpretability
of cluster assignments.

A critical challenge in this domain is translating raw
big data from smart meters into meaningful consumption
profiles [18]. Principal Component Analysis (PCA) [19] is
often utilized to reduce the dimensionality of the data down
to a few orthogonal components, which are then clustered to
obtain the profiles. Duarte et al. [20] explored the impact of
different data preparation techniques on creating consump-
tion profiles for energy consumption analysis. Using real-
world data from a university campus, the authors evaluated
standardization, dimensionality reduction, and data enrich-
ment methods. Techniques such as matrix normalization,
standardization by rows, and PCA were applied along
with K-means clustering to group load curves. Similarly,
Bustamante et al. [21] studied individual residential elec-
tricity consumption in shared student housing using gran-
ular circuit-level data. The authors applied PCA to reduce
the dimensionality and uncover key consumption variables,
followed by K-means clustering to group residents into four
categories based on their median daily consumption. Build-
ing on these approaches, Al-Jarrah et al. [22] proposed a
multi-layered clustering framework for power consumption
profiling in smart grids. This method first performs local
clustering on smaller grids and then aggregates the results
at a global level, reducing computational complexity and
communication overhead while maintaining clustering accu-
racy. But some limitations remain. Notably, the framework
relies solely on K-means, and the authors did not compare
their approach with further clustering methods or evaluation
metrics, limiting the understanding of whether the observed
efficiency gains also lead to the best segmentation of power
consumption behaviors. Nonetheless, these three studies
highlighted how preprocessing techniques critically affect
load analysis and subsequent energy management decisions.

Moreover, recent advances in AI and neural networks,
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such as Self-Organizing Maps (SOMs) [23], offer innovative
approaches to data clustering and dimensionality reduction
[24], [25], as demonstrated by Rajabi et al. [14]. The authors
compared five techniques for electrical load pattern segmen-
tation: K-means, fuzzy C-means, Hierarchical clustering,
SOMs, and Gaussian Mixture Model (GMM), alongside
hybrid and adaptive approaches. The study emphasizes the
importance of data preprocessing, including normalization
and PCA, to improve clustering outcomes. Using metrics
such as the Davies–Bouldin index, silhouette score, and
Dunn index, the paper offers insights into the selection of
clustering algorithms based on specific data characteristics
and use cases, emphasizing the computational intensity of
hierarchical and SOM methods.

As evidenced by the previously mentioned studies, despite
its potential, SOM has been largely neglected in electricity
consumption analysis [26], with prior studies presenting
minor real-life applicability [27]. Furthermore, the aggre-
gation and averaging of data frequently result in the loss of
essential characteristics of load curves, complicating their
interpretation and application due to the extensive amount
of data provided by smart meters [28]. Additionally, deter-
mining the optimal temporal resolution of data for effective
clustering is an ongoing concern, as key features may be
lost at higher levels of aggregation, potentially affecting the
outcome of the processes [29], [30]. This topic would benefit
from further research.

Therefore, addressing these challenges is essential for
developing robust methods to identify energy consumption
profiles tailored to specific needs [31]. These profiles are
vital for understanding consumer habits and behaviors, sup-
porting demand-response programs, implementing profile-
based tariffs, and enhancing forecasting models.

B. MAIN CONTRIBUTIONS AND PAPER ORGANIZATION
The present study addresses the critical points previously
mentioned by presenting a comparative analysis of various
methodologies to derive consumer electricity profiles. It
benchmarks these methods using time-series data at different
resolutions, aiming to establish a standard for processing
large datasets while retaining the granularity needed to
identify typical and extreme behaviors. Ultimately, this work
seeks to provide a systematic and accessible approach to
generating optimal profiles at a low computational cost. In
particular, the main contributions can be listed as follows:

• A comprehensive and robust methodology based on
unsupervised learning techniques that can be readily
applied to various high-dimensional datasets across
different regions, particularly when the objective is to
identify typical profiles for characterizing household
electricity consumption patterns;

• A benchmark analysis of various consumption profiling
methods, specifically K-means, PCA with K-means,
SOM, and SOM with K-means, to verify which yields
the best profiles for different time resolutions (includ-
ing 1-min, 5-min, 15-min, and 1-hour granularity). To

achieve this, we present scores, namely the silhouette
coefficient and Davies-Bouldin index, and perform a
Fast Fourier Transform (FFT) study on the time-series
data to find the most suitable time unit of analysis;

• Present insightful visual representations of the profiles
to allow easy comparison of results for future studies,
providing empirical input data for demand response
programs and forecasting models.

The paper is organized as follows. Section II presents
the proposed methodologies, along with a description of
the dataset, dimensionality reduction, and clustering meth-
ods. Additionally, the evaluation scores are also described.
Section III performs a detailed exposition of the obtained
results, summarizing and commenting on the main findings.
Finally, Section IV contains the conclusion and possible
future work.

II. METHODOLOGY
The overview of the methodological approach is illustrated
in Fig. 1, which represents the research flowchart of this
work. A description of the datasets’ characteristics is done in
Section II-A. The data preprocessing steps are explained in
Section II-B. Section II-C describes the main characteristics
of the consumption profiling methods defined, and Sec-
tion II-D presents the selected cluster validation techniques.

A. DATA DESCRIPTION AND ANALYSIS
Cluster analysis cannot be conducted without the availability
of a dataset. Therefore, it is essential to use a suitable
household energy consumption dataset. Kang et al. [4]
provide an outstanding review of building electricity use
profile models, offering the community a structured and
carefully selected list of open datasets that can be used to
foster data-driven research in this field.

This paper had access to private electricity consumption
datasets from eighteen households from various municipal-
ities in mainland Portugal, one house per city. Each dataset
presents different periods of consumption data measurement,
provided in power (W), all in a 1-minute resolution. Fur-
thermore, it is worth noting that all homes belong to diverse
social and economic backgrounds with differing family sizes
and periods of measurement. This heterogeneity in the data
enhances the robustness of the proposed methods, ensur-
ing their effectiveness when applied to additional datasets.
House 97 has the longest duration of data collection at 519
days, while house 91 has the shortest at 249 days, with
at least one recorded instance of consumption data. Addi-
tionally, the datasets include information on the presence of
photovoltaic systems for self-consumption, with five houses
reporting this feature. Table 1 presents a summary of the
datasets’ characteristics.

B. STAGE 1: DATA PREPROCESSING
According to earlier research [15], data cleaning and pre-
processing are two key processes in obtaining interpretable
results from cluster analysis.

VOLUME -, 2025 3



Marcelo Forte et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Power 

⋮

Power

Power

⋮

Power

…

…

…

Power

⋮

Power

Power

⋮

Power

ID H1 – Day 0  

ID HN – Day m  

ID H1 – Day m  

ID HN – Day 0  

House N

Power

⋮

Power 

Day 0 – 00:00  

⋮

Day m – 23:59 

House 1

Power 

⋮

Power 

House N⋮

Raw Time-Series Datasets

Stage 1 – Data Preprocessing 
Data Cleaning & Normalization  

Replace null/negative power 
entries (interpolation methods)

FFT Analysis 

Determine the most suitable time unit of 
analysis for the profiles (daily, weekly…)

Stage 2 – Consumption profiling

House 1

⋮

⋮

⋮

23:59 00:00 …

Apply Consumption Profiling Methods

K-means Principal Component 
Analysis (PCA) with K-means

Self-Organizing Maps 
(SOM) SOM with K-means

(𝒏 × 𝒅) with different resolutions

Stage 3 – Validation
Cluster Validation

Identify consumers’ 

Consumption profiles
for different resolutions 

Determine optimal number of clusters

Goal
Normalize power 

entries

Silhouette Coefficient 

Davies - Bouldin Index

Quantization Error

New clean and preprocessed datasets 

FIGURE 1. Overview of methodological approach.

1) Data Cleaning and Normalizing
Some entries in the dataset may lack power information
or not include all consumption days. Interpolation using
nearby entries can replace these absent values, assuming
similar consumption patterns between nearby instants. When
dealing with time-series data, removing specific rows that
have missing entries may not be a practical solution, as this
can result in gaps in daily, weekly, or seasonal profiles that
do not accurately represent actual consumption behavior.
Instead, it is advisable to consider the unit of analysis for
the profiles and remove an entire day or week. This approach
helps to avoid gaps and preserves the integrity of the data
curves.

Some entries may also contain inaccurate information,
such as abnormal consumption between periods of very
low activity. These points, known as outliers, should be
handled and eliminated using, for instance, thresholds for
data removal and interpolation methods for replacement.

One of the most crucial steps in data analysis is normaliz-
ing the data before applying any dimensionality reduction or
clustering methods, as these algorithms are sensitive to the
scale of the data. Consequently, each value should range
from 0 to 1 to ensure that each entry contributes equally
to the distance calculation between data points, helping to
improve accuracy [32].

2) Fast Fourier Transform Analysis
The Fast Fourier Transform (FFT) [33] is a mathematical
algorithm used to convert data in the time domain (such as
time-series signals) into the frequency domain, where it is
represented as a combination of sinusoidal components with
specific frequencies, amplitudes, and phases. It computes the
Discrete Fourier transform (DFT) of a signal and its inverse
(IDFT), with the most well-known FFT method being the
Cooley-Tukey [34]. In the context of energy consumption

data, FFT can help identify dominant periodic patterns,
such as daily, weekly, or seasonal cycles, by revealing the
frequencies at which the data exhibit the most significant
variations [35]. This makes FFT a valuable tool for deter-
mining the optimal study period for consumption profiles,
as it allows researchers to focus on the natural cycles of
consumption behavior [36]. By identifying these dominant
frequencies, FFT can help tailor the analysis to the intrinsic
temporal structure of the data, ensuring that dimensionality
reduction and profiling methods capture the most relevant
and recurring patterns.

C. STAGE 2: CONSUMPTION PROFILING METHODS
Time-series data frequently belongs to the domain of big
data, particularly when dealing with high-resolution data
collected from smart meters. Consequently, it is increas-
ingly important to consider this factor when defining and
identifying consumption profiles. To this end, the present
study introduces four distinct methodologies: K-means,
PCA with K-means, SOM, and SOM with K-means.

K-means (for clustering) frequently appears in applica-
tions related to household consumption profiles, as men-
tioned in Section I-A. It serves as a basis for comparison
with the remaining proposed methods. PCA (for dimen-
sionality reduction) is also frequently employed in similar
studies; therefore, we combined it with K-means in a hybrid
approach. Furthermore, the review studies conducted by
Aghabozorgi et al. [37] and Kang et al. [4] highlight that
SOMs (for clustering and dimensionality reduction) have
enormous potential, although rarely explored in this context.

In this study, by combining different approaches, the
objective is to identify the most suitable techniques for
big time-series data and how data granularity impacts the
final profiles. Consequently, it is crucial to provide a brief
introduction to these methods.
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1) K-means Clustering
Cluster analysis (often known as clustering) corresponds to
the general problem of partitioning a dataset into natural
subgroups called clusters [38]. Objects within the same
group should be as similar as possible (based on a similarity
measure), while objects between different groups should be
as dissimilar as possible.

Various methods for distinct strategies have been devel-
oped, with K-means [39] being one of the most widely
applied due to its ease of use and broad applicability to
diverse datasets. In the K-means algorithm, each cluster is
characterized by a point (or multiple points in the case of
time-series curves) known as the centroid.

For a dataset with n features, each centroid ck can be
represented as

ck = [ck1 ,ck2 , . . . ,ckn]. (1)

The algorithm assigns labels to the data based on its
distance to these centroids, allocating each input entry to the
nearest one. This process is iterative, with centroids being
updated in each iteration. The most commonly employed
similarity measure is the Euclidean distance [40]. However,
in the context of time-series data, dynamic time wrapping
(DTW) [41] emerges as a valuable alternative, as it can
identify similar curves independent of the time steps, speed,
or length.

2) Principal Component Analysis
Principal Component Analysis (PCA) [19] is a statistical
technique employed for dimensionality reduction. It allows
complex datasets to be summarized by identifying their most
significant patterns of variation. Specifically, the principle
of PCA is to convert a set of variables that may be
correlated into a set of linearly independent features through
orthogonal transforms called principal components. PCA
transforms the original data into a new coordinate system,
where the dimensions (principal components) are ranked
based on the amount of variance they explain [38].

Given the input data D ∈ Rn×d , the algorithm first
centers it by subtracting the mean from each point
xi = (xi1, xi2, . . . ,xid)

T , resulting in matrix Z. Next, it com-
putes the eigenvectors U = (u1 u2 . . . ud) and eigenvalues
(λ1, λ2, . . . ,λd) of the covariance matrix ∑, defined by

∑ =
1
n
(ZT Z). (2)

Then, given the desired variance threshold α , PCA selects
the smallest set of dimensions r that capture at least α

fraction of the total variance (normally α = 0.9 or higher).
Finally, it computes the coordinates of each point in the new
r-dimensional principal component subspace, to generate the
new data matrix A ∈ Rn×r

A = {ai |ai =UT
r xi, for i = 1, . . . ,n}. (3)

In the context of energy consumption time-series anal-
yses, PCA is particularly valuable for identifying key
consumption patterns and reducing redundancy in high-
dimensional datasets [42]. By isolating the most influential
components (power values at seconds, minutes, or hours,
according to the granularity), the method enables a focus on
the underlying trends and behaviors of energy consumption
profiles. This approach not only simplifies the analysis but
also enhances the interpretability of clustering or profiling
methods by ensuring that the most relevant features of the
data are preserved [19].

3) Self-Organizing Maps
As proposed by Kohonen [23], a Self-Organization Map
(SOM) consists of a single-layer unsupervised artificial neu-
ral network designed for information compression and clus-
tering. SOMs project high-dimensional data onto a lower-
dimensional grid, typically with two dimensions, preserving
the topological relationships within the data. This means that
similar points are mapped close to each other, thus forming
clusters represented by each neuron.

The method begins by initializing the neurons’ weights
with random values or samples from the input data and
defining the grid size. Then the training process consists
of three steps [43]:

• Competition, when each neuron competes to capture
the current input point. All neurons calculate a simi-
larity distance measure (typically Euclidean distance),
winning the most similar neuron to the input point (best
matching unit, BMU);

• Cooperation, when the BMU identifies the topological
neighborhood of excited neurons, according to a radius;

• Adaptation, when the BMU and the neighbors adapt
their weights according to the current training epoch
and learning rate.

The training is also characterized by the smoothing step:
the neighborhood radius and the learning weight decrease
with each iteration.

SOMs are particularly effective for identifying complex
consumption behaviors that may not be evident through
traditional clustering methods. They can handle non-linear
relationships in the data and provide an intuitive visual
representation of the clusters, making it easier to interpret
and analyze the results. By using SOMs, researchers can
uncover typical and atypical consumption profiles, aiding in
tasks such as demand forecasting, tariff design, and load
management.

D. STAGE 3: CLUSTERING VALIDATION TECHNIQUES
Since working with unsupervised methods, no ground truth
is available; therefore, internal validation should be used to
quantify the performance of the methods [38] and select the
ideal number of clusters and SOM grid size. Three internal
validation metrics, Quantization Error [44], silhouette coeffi-
cient [45], and Davies-Bouldin index [46] can be employed,

VOLUME -, 2025 5



Marcelo Forte et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

being the most suitable for this type of analysis based on
the studies reviewed in Section I-A.

1) Quantization Error
The Quantization Error (QE) [44] is a critical aspect
of SOMs. It is a statistical measure of variance and is
associated with the final synaptic weight of the neurons after
learning.

The QE mathematically expresses the squared distance
(usually the average Euclidean distance) between input data
x and their corresponding winning neurons. Thus, the QE
reflects the average distance between each data point (xi)
and its BMU, defined as

QE =
1
n

n

∑
i=1

∥xi −BMUi ∥, (4)

with n as the number of samples. It plays an important role
in assessing the quality of SOMs on the same dataset, par-
ticularly when determining the best size of the topological
grid or the optimal model parameters, such as the learning
rate and neighborhood radius. Generally, smaller QE values
indicate better results.

2) Silhouette Coefficient
For each point xi, the silhouette coefficient is

si =
µmin

out (xi)−µin(xi)

max{µmin
out (xi),µin(xi)}

, (5)

where µmin
out (xi) is the mean of the distances from xi to points

in the closest cluster, and µin(xi) is the mean distance from xi
to points in its own cluster. The total silhouette coefficient
[45] is defined as the mean si value across all points, given
by (6), where a value close to +1 indicates good clustering.

SC =
1
n

n

∑
i=1

si (6)

3) Davies-Bouldin Index
The Davies-Bouldin measure for a pair of clusters Ci and
C j is defined as

DBi j =
σµi +σµ j

δ (µi,µ j)
, (7)

where µi denote the centroid of cluster i, σµi =
√

var(Ci)
represents the dispersion of the points around the respective
centroid (square root of the total variance) and δ (µi,µ j) is
the distance between the centroids.

The Davies-Bouldin index [46], for k clusters, is thus
defined as

DB =
1
k
·

k

∑
i=1

max
i̸= j

{DBi j}, (8)

meaning that for each cluster Ci it is chosen the cluster C j
that returns the largest DBi j ratio. Therefore, smaller DB
values mean better clustering (clusters are well separated
and each one is well represented by its centroid).

III. APPLICATION OF CLUSTERING METHODS IN
CONSUMPTION PROFILES
This section describes the evaluation of different approaches
to obtaining house consumption profiles. It includes two
main subsections, focusing on the data preprocessing steps
and the presentation of results from the analyzed datasets.
In each subsection, the fundamental aspects of the applied
methodology are critically and concisely discussed.

The code was written in Python using the Google Colab
platform, and the scikit-learn library [47] for the pre-
processing, PCA, clustering, and evaluation methods, and
the SOM was implemented using MiniSOM [48]. Most
parameters were left at default, while those modified are
justified throughout the text. Specifically, we employed the
‘full’ SVD solver for PCA, with the variance threshold α

defined as n_components = 0.9. For SOM, a learning rate
of 0.5 and a neighborhood radius of 1.1 were selected, as
these modifications yielded superior overall results for all
methods.

A. DATA CLEANING AND NORMALIZATION
The initial stage in obtaining household consumption pro-
files is data preprocessing, as illustrated in Fig. 1. Each
house includes a power consumption dataset, making it nec-
essary to create a single dataframe comprising all the houses.
The datasets were normalized using the MinMaxScaler
approach, ensuring consumption values between 0 and 1.
When working with consumption curves, the MinMaxScaler
is preferable to the StandardScaler since it does not modify
the shape of the curves [32]. The latter assumes a Gaussian
distribution for the data, an invalid option for uncertain data
such as residential consumption.

Furthermore, regarding missing data, all days with more
than eight hours of missing data were excluded, correspond-
ing to 137 days distributed across all houses. These days
typically involved blackouts in the electrical grid, which
caused the smart meters to turn off. Subsequently, on the
remaining days with incomplete data, the backward fill
(bfill) and forward fill (ffill) methods of the Pandas library
were employed to replace NaN values by propagating the
following or previous valid observation for the same instant.
For instance, if there is a missing value on 12/12/2022 at
17:00:00, the method will try to replace that value with
a valid observation from the day immediately before or
after. Consequently, one ensures a complete and cleaned
dataframe, with dimensions 7633×1440. Table 1 presents a
summary of the cleaned dataset’s characteristics, along with
the original datasets.

B. FFT ANALYSIS AND FINAL PIVOT DATAFRAMES
With the data cleaned and organized, all that remains is
to identify the best unit of analysis for the consumption
profiles. By applying the FFT, it was clear that there is a
daily pattern in the electricity consumption of the houses.
Fig. 2 illustrates the outcome of the FFT application for
the example of house 97 (highest number of days). With
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TABLE 1. Summary of the main characteristics of the original and cleaned datasets.

Before cleaning After cleaning

House ID With PV Start Date End Date # of days Start Date End Date # of days

27 03/12/2021 15:31 31/03/2023 23:58 484 04/12/2021 00:00 31/03/2023 23:59 479

29 X 27/01/2022 12:28 31/03/2023 23:58 429 28/01/2022 00:00 31/03/2023 23:59 420

31 06/12/2021 13:13 31/03/2023 23:58 481 07/12/2021 00:00 31/03/2023 23:59 474

37 X 09/02/2022 11:47 31/03/2023 23:58 416 12/02/2022 00:00 31/03/2023 23:59 413

41 X 11/01/2022 16:17 31/03/2023 23:58 445 12/01/2022 00:00 31/03/2023 23:59 421

64 03/02/2022 10:59 17/11/2022 11:21 288 04/02/2022 00:00 16/11/2022 23:59 286

67 27/01/2022 14:33 31/03/2023 23:58 429 28/01/2022 00:00 31/03/2023 23:59 428

71 26/11/2021 10:00 31/03/2023 23:58 491 26/11/2021 00:00 31/03/2023 23:59 490

76 03/03/2022 15:16 31/03/2023 23:58 394 04/03/2022 00:00 31/03/2023 23:59 393

86 X 21/01/2022 09:59 31/03/2023 23:58 435 21/01/2022 00:00 31/03/2023 23:59 434

91 25/11/2021 12:40 31/07/2022 23:58 249 26/11/2021 00:00 31/07/2022 23:59 247

92 X 13/01/2022 13:49 31/03/2023 23:58 443 14/01/2022 00:00 31/03/2023 23:59 438

93 16/02/2022 10:56 31/03/2023 23:58 409 17/02/2022 00:00 31/03/2023 23:59 408

94 02/12/2021 15:31 31/03/2023 23:58 485 03/12/2021 00:00 31/03/2023 23:59 483

96 22/11/2021 16:29 19/02/2023 13:44 454 23/11/2021 00:00 18/02/2023 23:59 405

97 29/10/2021 16:18 31/03/2023 23:58 519 30/10/2021 00:00 31/03/2023 23:59 516

100 13/01/2022 17:43 31/03/2023 23:58 443 14/01/2022 00:00 31/03/2023 23:59 439

105 11/12/2021 10:44 31/03/2023 23:58 476 12/12/2021 00:00 31/03/2023 23:59 459

a period of approximately 1440 minutes for all houses, the
fundamental frequency of the data corresponds to 24 hours.
Consequently, the consumption data were arranged in a pivot
table, where the columns represent the minutes of the day
(00:00 − 23:59), and each row contains the house ID and
the corresponding date of consumption data (recall Fig. 1).

After formatting the data according to the required con-
figuration for the various methods, it was possible to create
different dataframes with varying resolutions. For this study,
we tested data with granularity of 1 minute, 5 minutes,
15 minutes, and 1 hour, resulting from averaging several
intervals corresponding to these specified resolutions.
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FIGURE 2. Spectral analysis of power consumption for House 97.

C. CONSUMPTION PROFILING RESULTS
Four approaches were considered for obtaining electric-
ity consumption profiles: K-means, PCA combined with
K-means, SOM, and SOM combined with K-means. The
research aims to address two phases. First, we want to
determine which method produces the best profiles for the
original data resolution of 1 minute, comparing them with

the standard K-means method, the most employed algorithm
(remember Section I-A). After having well-defined results,
the second phase of the investigation assesses the impact of
data resolution on the behavior of the profiling methods.

This section is divided into six parts. The first four
subsections present and explain each approach, followed
by a critical comparison of the results based on the scores
and profiles obtained. It concludes with a comprehensive
analysis of the clusters corresponding to the best method.

1) K-means Clustering Results
As the most widely used method in the literature for
obtaining consumption profiles, this approach involves ap-
plying the K-means technique to the pivot table of the
daily consumption data. The method requires defining the
number of clusters, k, in advance. To determine this, the
elbow method [49] offered an initial suggestion for the most
appropriate number of clusters for the data: between 8 and
12. Selecting only 6 clusters resulted in different behaviors
being combined into the same clusters, leading to the loss of
significant profiles. On the other hand, choosing 14 clusters
did not reveal new profiles; instead, it merely resulted in the
division of existing clusters, leading to redundant profiles
concerning consumption behavior.

Additionally, we performed an iterative analysis using the
silhouette and Davies-Bouldin metrics to validate the sub-
jective insights gained from the elbow method. This analysis
indicated that the optimal number of clusters within the 8-
12 range would be k = {8,10,12}. These values served as
the basis for the remaining approaches, described next.

Furthermore, the initialization of the cluster centroid was
left at default (k-means++), which uses sampling based on
an empirical probability distribution of the points [47]).
Table 2 summarizes the optimal scores obtained for the
K-means consumption profiling approach.
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2) PCA with K-means Results
This approach involves applying PCA to the pivot table to
reduce the dimensionality of the data. It is followed by
the application of K-means to the newly reduced dataset
while varying the number of clusters between k= {8,10,12}
according to the case study.

Starting with PCA, it was first necessary to determine the
optimum number of components. By defining the variance
retention threshold α as 0.9, the analysis determined the
number of principal components to be 157. This means that
the first 157 components effectively capture 90% of the vari-
ability in the data, significantly reducing its complexity. The
pivot table decreased from 7633×1440 to 7633×157 after
PCA, while preserving the essential patterns and structures
for clustering. Table 2 reveals a summary of the optimal
scores obtained for the PCA + K-means consumption pro-
filing method.

3) SOM Results
The third technique includes applying a SOM as the primary
source for obtaining clusters. It is necessary to define
specific parameters to implement this method, such as the
grid size, learning rate, and neighborhood radius. According
to K-means results, it is clear that the SOM grid should be
composed of 8, 10, or 12 neurons to enable comparison
between methods. Therefore, [2× 4], [2× 5], and [4× 3]
grids were used to obtain the 8, 10, and 12 clusters,
respectively.

A comprehensive preliminary analysis was performed on
various grid sizes to identify the optimal learning rate and
neighborhood radius values. An iterative tuning process
determined that a learning rate of 0.5 and a neighborhood
radius of 1.1 provided the best outcomes. These parameters
resulted in the highest silhouette score and the lowest
Davies-Bouldin index and quantization error. Furthermore,
the initial weights were derived as random samples from the
dataset rather than as random points (aiming to align with
the initialization process of K-means), and trained for 10000
epochs. Table 2 reveals a summary of the optimal scores
obtained for the SOM consumption profiling method.

4) SOM with K-means Results
Motivated by the SOM’s capacity to reduce dimensionality
(similar to the aim of PCA), this approach seeks to test
whether the SOM can solely reduce dimensionality, while
K-means focuses on identifying consumption profiles.

To determine the optimal number of neurons to utilize,
a square grid was chosen to ensure an equal spatial distri-
bution of the units. The rule M ≈ 5×

√
n was employed,

where M represents the number of units and n indicates
the number of samples tested. This policy is referenced
commonly in the literature [50], [51]. Given that there
are 7633 days, this calculation yields approximately 437
neurons, corresponding to a grid of roughly [21×21] units.

Additionally, a new iterative analysis was conducted to
identify the preferred learning rate and neighborhood radius.
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FIGURE 3. Unified distance matrix for the SOM + K-means approach,
comprising [21x21] units.

This analysis yielded values of 0.5 and 1.1, respectively,
identical to those obtained with the SOM approach (section
III-C3). This outcome was anticipated, given that the dataset
tested is the same. Table 2 reveals a summary of the opti-
mal scores obtained for the SOM + K-means consumption
profiling method.

Fig. 3 presents the Unified distance matrix (U-matrix)
[24] of the [21 × 21] grid, where each cell represents a
node of the SOM. The shading intensity corresponds to the
distances between the weight vectors of neighboring nodes.
Darker areas indicate smaller distances (regions that should
represent clusters), and lighter areas reveal larger distances
(indicating boundaries between clusters).

5) Comparison of Methods
Table 2 summarizes the obtained scores for the benchmark
analysis of 1-minute resolution consumption data, compar-
ing the performance of the profiling approaches K-means,
PCA combined with K-means, SOM, and SOM combined
with K-means across different metrics and cluster sizes. The
metrics considered include the Silhouette Score, Davies-
Bouldin Score, Computational Cost (in seconds), and Quan-
tization Error (for SOM-based methods).

Analyzing Table 2, the results demonstrate a clear im-
provement in clustering quality when transitioning from
basic K-means to PCA + K-means, SOM, and finally to
SOM + K-means. Across all cluster sizes, SOM combined
with K-means achieves the highest silhouette scores, indi-
cating the best-defined and most well-separated clusters. For
example, with 8 clusters, the silhouette score increases from
0.1081 (K-means) to 0.1690 (SOM + K-means), correspond-
ing to a 56.3% improvement. Simultaneously, the Davies-
Bouldin score decreases from 2.7413 to 2.6611, revealing
that the clusters are both more compact and better separated,
with a relative reduction of 2.9%.

While not achieving the same peak performance as the
SOM + K-means, PCA + K-means provides a compelling
trade-off between clustering quality and computational effi-
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TABLE 2. Comparison of metrics for each approach, considering 1-minute resolution.

k = 8 Clusters K-means PCA + K-means SOM [2x4] SOM [21x21] + K-means

Silhouette Score 0.1081 0.1288 0.1406 0.1690

Davies-Bouldin Score 2.7413 2.7080 2.9248 2.6611

Computational Cost (s) 2.6245 0.3256 2.1712 49.4151

Quantization Error - - 3.6502 2.7652

k = 10 Clusters K-means PCA + K-means SOM [2x5] SOM [21x21] + K-means

Silhouette Score 0.1067 0.1172 0.1275 0.1423

Davies-Bouldin Score 2.6438 2.6651 2.9579 2.5433

Computational Cost (s) 1.9483 0.3706 2.4599 45.5021

Quantization Error - - 3.6145 2.7652

k = 12 Clusters K-means PCA + K-means SOM [4x3] SOM [21x21] + K-means

Silhouette Score 0.1043 0.1149 0.1182 0.1376

Davies-Bouldin Score 2.7850 2.6569 2.9880 2.6682

Computational Cost (s) 1.9126 0.5772 2.8392 43.9700

Quantization Error - - 3.5299 2.7652

ciency. The application of PCA reduces the dataset’s dimen-
sionality, significantly accelerating the clustering process.
For example, with 8 clusters, PCA + K-means achieves
a reasonable silhouette score of 0.1288 at a fraction
of the computational cost (0.3256 seconds) compared to
SOM + K-means (49.4151 seconds). This efficiency makes
PCA + K-means particularly suitable for scenarios where
computational resources are limited. SOM approach demon-
strates mixed results. While it performs better than the
basic K-means, it struggles to match the cluster quality
of SOM + K-means, as evidenced by its higher Davies-
Bouldin scores and quantization errors. For example, with
12 clusters, SOM achieves a Davies-Bouldin score of
2.9880, compared to 2.6682 for SOM + K-means. The
higher quantization errors of SOM further emphasize the
advantage of refining the initial clustering using K-means.

Nevertheless, it is crucial not only to consider the scores
but also to compare the resulting profiles to confirm if the
identified clusters align with the expected trends. A com-
prehensive examination revealed that the most meaningful
profiles correspond to k = 12. Fig. 4, Fig. 5, Fig. 6, and
Fig. 7 exhibit the distribution of daily consumption profiles
across the identified clusters using percentile plots, for the
K-means, PCA + K-means, SOM, and SOM + K-means
approaches, respectively. Each subplot corresponds to a
distinct cluster, with the x-axis representing the time of day
(in hours) and the y-axis representing the normalized power
consumption. The shaded regions depict the data’s spread
within each cluster, with the light blue area encompassing
80% of the data (between the 10th and 90th percentiles)
and the darker teal area highlighting the interquartile range
(IQR, between the 25th and 75th percentiles). The solid
dark blue line represents the median (50th percentile) power
consumption profile. The number of days assigned to each
cluster is indicated in the top left corner of each subplot.

Table 3 presents the correspondence between the various
profiles identified through the different methodologies.

TABLE 3. Cluster correspondence between the different consumption
profiling approaches.

Cluster Description K-means PCA +
K-means SOM SOM +

K-means

Lunch Time Peak Consumption 1 1 1 1

Bimodal Early Morning and
Evening Peaks 2 2 2 2

Evening and Nighttime High
Consumption 3 3 3 3

Moderate Daytime Use with
Dinner Time Peak 4 4 4 4

Flat Consumption Over 24 Hours 5 5 5 5

Nighttime Consumption Peaks 6 6 - 6

High Consumption During
Working Hours 7 - 7 7

High Pre-Dawn Usage with
Evening Peak 8 8 8 8

Consistent All-Day Use with
Evening Peak 9 9 9 9

Overnight Peaks with Reduced
Evening Use 10 10 10 10

Afternoon Peak Usage - - - 11

Low Consumption with Late
Evening Peak 12 12 12 12

Daytime and Late Evening High
Consumption - 7 6 -

Morning-to-Midday Peak Usage 11 11 11 -

Observing Fig. 7, one can see that the profiles display
distinct consumption patterns over the 24 hours. For in-
stance, some clusters have harsh evening peaks (e.g., clusters
4 and 12), while others exhibit flatter, more consistent
consumption (e.g., clusters 5 and 9). However, despite
the good distinction between clusters, there is an uneven
distribution of days between the profiles: cluster 5 includes
3713 days, and cluster 6 only 68 days. This may indicate
dominant consumption patterns in the dataset, with the
method capable of grouping the most different consumptions
into smaller clusters. On the other hand, PCA + K-means
(Fig. 5) distributes the days more evenly: the most populous
profile, cluster 5, has 2705 days, with the least typical cluster
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FIGURE 4. Results for 12 clusters, 1-min resolution using K-means approach.
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FIGURE 5. Results for 12 clusters, 1-min resolution using PCA + K-means approach.
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FIGURE 6. Results for 12 clusters, 1-min resolution using SOM approach.
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FIGURE 7. Results for 12 clusters, 1-min resolution using SOM + K-means approach.

having 62 days. Even so, the method discovered cluster 11,
characterized by morning-to-midday peak usage, not present
in SOM + K-means. K-means also grouped this cluster
(cluster 11 in Fig. 4), similar to SOM (cluster 11 in Fig. 6).
In addition, SOM and PCA + K-means also identified a
medium-sized profile typical of daytime and late evening
high consumption, which the remaining methods failed to
achieve. Conversely, only SOM + K-means created a typical
afternoon consumption cluster (refer to Table 3).

In general, SOM + K-means produces more diverse
clusters, managing to group less frequent consumption
patterns into distinct clusters. This behavior is likely due
to combining the SOM’s topology-preserving mapping and
K-means’ refinement. SOM captures some unique patterns
but struggles to provide the same level of cluster separation
as SOM + K-means. By contrast, K-means provides a
less refined distribution of clusters, with a more consistent
distribution of curves over the clusters. Nonetheless, the
difference with PCA + K-means is not as noticeable as
it might be in practice. The profiles found are virtually
identical, revealing that PCA + K-means is an extremely
valuable option for obtaining faster results with big data,
yet obtaining better scores.

6) Analysis of the Identified Consumption Profiles
Since the SOM + K-means method achieved the best
scores and captured the most significant behavior among
the methods tested, it is now important to briefly analyze
the characteristics of the consumption profiles obtained by
this method. As mentioned above, each cluster contains
several days from different households. Fig. 8 illustrates the
distribution of the clusters among the houses under study,
while Fig. 9 presents a bar plot displaying the monthly
distribution of each identified cluster.

A visual examination of the data reveals the prevalence
of specific profiles across the analyzed families, such as
cluster 5. This profile accurately represents the consumption
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FIGURE 8. Distribution of days per house in each daily SOM + K-means
consumption cluster.

patterns of houses 100, 105, 76, and 97, exhibiting relatively
constant electricity usage throughout the day and night. This
suggests energy-efficient routines or low occupancy, making
these families ideal candidates for load shifting or automated
flexibility programs, as their stable demand enables more
accurate forecasting and control. Cluster 9 also demonstrates
a consistent pattern but holds a higher average consumption.
This profile includes a subtle peak in power usage during
dinner time and primarily represents house 64.

Cluster 1 is another profile frequently observed across
various households. In particular, houses 37 and 93 exhibit
a notable predominance of days within this cluster, repre-
senting their most typical profile. Characterized by a distinct
midday consumption peak, reaching a minimum at night,
this pattern reflects typical lunchtime behavior, which could
benefit from time-of-use tariffs that incentivize pre-heating
or appliance usage during off-peak hours. Interestingly, this
profile emerges in all households except 86, indicating that
midday activity is widespread but not universal.

On the other hand, cluster 8 depicts the opposite behav-
ior, with sustained high consumption during the night and
lower daytime usage, with occasional peaks. This pattern is

VOLUME -, 2025 11



Marcelo Forte et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 2 3 4 5 6 7 8 9 10 11 12
Month of Year

0

100

200

300

400

N
um

be
r 

of
 D

ay
s

Clusters
1
2
3
4
5
6
7
8
9
10
11
12

FIGURE 9. Monthly distribution for each daily SOM + K-means consumption cluster.

unusual and may indicate nighttime appliance use, charging
of electric vehicles (EVs), or inefficient loads such as
heating/cooling systems running overnight. House 29, which
exhibits this behavior noticeably, could particularly benefit
from incentive-based EV charging schemes, helping to shift
demand to periods of excess renewable generation, such as
during wind curtailment or in response to solar production
declines [52]. Profiles 6 and 10 exhibit similar patterns,
although they are less common and unpredictable.

It is also worth noting that some houses exhibit greater
homogeneity in their consumption patterns than others. For
instance, house 64 can be characterized by a relatively
limited set of three profiles, indicating a more predictable
and stable electricity demand. In contrast, house 96 displays
a much more diverse range of twelve distinct clusters,
reflecting highly variable daily patterns. As a result, this
household may require adaptive or real-time management
strategies, while house 64 could effectively use static man-
agement approaches due to its stable electricity usage,
saving computational resources.

Additionally, one can identify different monthly consump-
tion patterns among the various clusters in Fig. 9. Notably,
profiles 4, 9, and 12 demonstrate a preference for the winter
months, in contrast to clusters 1 and 5, which are distributed
evenly throughout the year without significant fluctuations.
Overall, the autumn and winter months (November to April)
exhibit a consistent distribution across multiple clusters,
while fewer clusters characterize the spring and summer
months (from May to October).

To get a complete overview of the consumption behavior,
Fig. 10 illustrates a lattice heatmap of the monthly distri-
bution of daily electricity usage profiles across the different
households. Each cell reveals how many days in a month a
household’s consumption pattern matched a specific cluster.
The intensity of the colors indicates how frequently each
cluster occurred, with darker colors representing a higher
frequency of days associated with that cluster, confirming
the distinct patterns among the various profiles.

Fig. 10 easily reveals that house 27 shifts its consumption
between clusters 4 and 5, regardless of the month of the

year, similarly to house 37, which alternates more frequently
between clusters 1 and 5. On the other hand, house 41’s
behavior is distributed across several clusters throughout
the year, with the winter months dominated by clusters 3
and 4, while cluster 5 is most typical in May, September,
and October. This insight is relevant for optimizing energy
systems and supporting sustainable practices by enabling
demand response strategies, dynamic pricing models, or
even forecasting consumption to improve energy production
and distribution planning throughout the year [53].

Moreover, the identification of distinct and recurring
consumption patterns can support the development and
tuning of energy management algorithms, particularly in
applications involving home energy storage. For instance,
these typical daily household consumption profiles could
guide battery control strategies to enhance self-consumption,
reduce peak loads, and support grid services by determining
optimal charging and discharging schedules [54].

D. IMPACT OF THE RESOLUTION ON THE
CONSUMPTION PROFILES
Following the analysis of consumption profiles at a 1-
minute resolution, the present section examines how the
scores and clusters fluctuate in response to changes in
data granularity, maintaining the four approaches considered
previously. Table 4 summarizes the scores according to the
5-minute, 15-minute, and 1-hour resolutions for 12 clusters.
For the PCA + K-means approach, the selected number of
components was 70, 35, and 12, respectively.

Looking at the 5-minute resolution results in Table 4 and
comparing them with those from the 1-minute resolution in
Table 2, one can see improvements in the silhouette score
of 7.9% for K-means, 11.66% for PCA + K-means, 9.2%
for SOM, and 12.9% for SOM + K-means. The Davies-
Bouldin score also decreases, with this reduction being more
noticeable in K-means and PCA + K-means. This trend
persists as the resolution decreases, with SOM + K-means
reaching a silhouette score of 0.1981 and a Davies-Bouldin
index of 1.8712 at 1-hour resolution. Concerning the compu-
tational cost, PCA + K-means consistently proves to be the
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5 0 0 1 49 0 0 0 0 0 0 0

5 0 0 4 51 0 0 0 0 0 2 0

4 0 0 1 23 0 0 0 0 0 1 0

0 0 0 0 26 0 0 0 0 0 0 0

1 0 0 1 28 0 0 0 0 0 0 0

0 0 0 1 30 0 0 0 0 0 0 0

0 0 0 0 31 0 0 0 0 0 0 0

1 0 0 0 29 0 0 0 0 0 0 0

0 0 0 0 31 0 0 0 0 0 0 0

1 0 0 1 26 0 0 0 0 0 0 0

3 0 0 5 34 0 0 0 0 0 0 3

House 105

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

6 0 1 18 14 0 16 0 0 0 1 6

5 0 0 10 22 0 9 0 1 0 3 6

4 0 0 16 28 0 3 0 2 0 4 5

4 0 0 7 16 0 0 0 0 0 1 2

0 0 0 6 22 0 0 0 0 0 1 2

4 0 0 13 12 0 0 0 0 0 0 1

3 0 2 6 18 0 0 0 1 0 0 1

3 0 0 7 20 0 0 0 0 0 0 1

3 0 0 10 16 0 0 0 0 0 0 1

4 0 0 8 18 0 1 0 0 0 0 0

2 0 0 6 16 0 0 0 0 0 1 2

4 0 0 15 31 0 3 0 2 0 3 0

House 27

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

2 1 1 1 2 2 1 20 0 2 1 2

4 3 4 5 7 3 1 26 0 1 0 2

0 10 7 2 5 3 1 27 1 4 0 2

1 6 2 2 2 3 0 12 0 2 0 0

0 10 3 0 3 0 0 15 0 0 0 0

0 8 0 0 4 4 0 10 0 3 0 1

0 5 1 0 4 4 0 10 0 2 0 0

2 7 3 3 4 0 0 10 0 2 0 0

0 6 1 2 2 4 0 13 0 2 0 0

1 9 2 0 2 3 1 9 0 3 0 1

0 8 2 1 1 0 0 15 0 0 0 0

2 6 6 3 0 1 0 11 2 0 0 0

House 29

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

5 0 0 21 4 0 0 0 32 0 0 0

5 0 0 31 1 0 1 0 18 0 0 0

3 0 0 22 21 0 1 0 15 0 0 0

3 0 0 15 4 0 1 0 6 0 1 0

2 0 0 1 28 0 0 0 0 0 0 0

0 0 0 0 25 0 0 0 0 0 0 0

1 0 0 0 30 0 0 0 0 0 0 0

0 0 0 0 31 0 0 0 0 0 0 0

3 0 0 0 27 0 0 0 0 0 0 0

1 0 0 1 29 0 0 0 0 0 0 0

4 0 0 8 18 0 0 0 0 0 0 0

4 0 0 27 4 0 2 0 18 0 0 0

House 31

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

14 0 0 2 15 0 0 0 0 0 0 0

18 0 0 7 19 0 0 0 0 0 1 0

44 0 0 5 11 0 0 0 1 0 1 0

28 0 0 0 2 0 0 0 0 0 0 0

27 0 0 0 3 0 1 0 0 0 0 0

26 0 0 1 2 0 0 0 0 0 1 0

26 0 0 0 0 0 2 0 0 0 3 0

30 0 0 0 0 0 0 0 0 0 1 0

16 0 0 0 14 0 0 0 0 0 0 0

25 0 0 0 6 0 0 0 0 0 0 0

19 0 0 0 9 0 0 0 0 0 2 0

9 0 0 1 21 0 0 0 0 0 0 0

House 37

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

1

2

3

4

5

6

7

8

9

10

11

12

M
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2 0 7 20 1 3 0 2 11 0 0 5

3 1 15 14 4 2 0 6 1 0 0 3

5 1 7 20 8 4 0 6 2 0 0 8

0 0 1 3 14 4 0 4 0 0 0 4

0 0 1 0 25 0 0 3 0 0 0 2

5 0 0 0 15 4 0 3 0 0 0 3

18 0 0 0 0 0 8 1 0 0 0 1

5 0 0 0 3 3 5 4 0 1 0 4

0 0 0 0 25 0 0 3 1 0 0 0

0 0 1 1 25 0 0 2 0 0 0 2

1 0 9 9 1 0 3 0 5 0 0 2

1 0 0 11 1 1 3 2 5 0 0 2

House 41

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

1 0 0 0 0 0 0 0 24 0 0 0

0 0 0 0 0 0 0 0 31 0 0 0

0 0 0 0 0 0 0 0 30 0 0 0

0 0 0 0 0 0 0 0 31 0 0 0

0 0 0 0 0 0 0 0 30 0 0 0

0 0 0 0 0 0 0 0 31 0 0 0

0 0 0 8 0 0 0 0 23 0 0 0

0 0 0 5 0 0 0 0 25 0 0 0

0 0 0 0 0 0 0 0 31 0 0 0

0 0 0 0 0 0 0 0 16 0 0 0

House 64

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

1 0 1 5 27 0 0 0 1 0 0 0

5 0 3 16 20 0 0 0 12 0 0 0

7 0 3 15 26 0 0 0 11 0 0 0

0 0 1 8 0 0 0 0 19 0 2 0

0 0 3 5 0 0 0 0 23 0 0 0

1 0 1 15 0 0 0 0 13 0 0 0

0 0 3 15 0 0 0 0 13 0 0 0

2 0 2 22 0 0 0 0 5 0 0 0

0 0 2 26 1 0 0 0 1 0 0 0

0 0 4 22 3 0 0 0 2 0 0 0

1 0 0 17 12 0 0 0 0 0 0 0

5 0 1 3 21 0 0 0 0 0 1 0

House 67

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

1 0 0 2 34 0 11 0 4 0 5 5

1 0 0 0 43 0 4 0 2 0 3 3

2 0 0 3 50 0 3 0 0 0 1 3

2 0 0 2 24 0 0 0 0 0 2 0

1 0 0 0 30 0 0 0 0 0 0 0

1 0 0 0 27 0 0 0 0 0 2 0

8 0 0 0 22 0 0 0 0 0 1 0

9 0 0 0 19 0 0 0 0 0 3 0

3 0 0 0 26 0 0 0 0 0 1 0

3 0 0 1 27 0 0 0 0 0 0 0

6 0 0 1 21 0 2 0 2 0 3 0

9 0 0 5 29 0 10 0 4 0 2 2

House 71

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

1 0 0 1 29 0 0 0 0 0 0 0

0 0 0 0 28 0 0 0 0 0 0 0

1 0 0 2 56 0 0 0 0 0 0 0

2 0 0 2 26 0 0 0 0 0 0 0

2 0 0 0 27 0 0 0 0 0 2 0

0 0 0 0 30 0 0 0 0 0 0 0

2 0 0 1 25 0 0 0 0 0 3 0

2 0 0 0 27 0 1 0 0 0 1 0

1 0 0 2 27 0 0 0 0 0 0 0

2 0 0 2 27 0 0 0 0 0 0 0

1 0 0 1 28 0 0 0 0 0 0 0

0 0 0 0 31 0 0 0 0 0 0 0

House 76

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

0 0 25 0 0 4 0 1 11 1 0 0

0 0 49 0 0 0 0 0 1 6 0 0

0 0 44 2 8 0 0 0 6 2 0 0

0 0 14 6 9 0 0 0 1 0 0 0

0 0 10 1 16 0 0 1 0 0 1 2

0 0 8 0 21 0 0 0 0 0 0 1

0 0 15 0 16 0 0 0 0 0 0 0

0 0 23 3 4 0 0 0 0 0 0 0

0 0 3 5 21 0 0 0 1 0 0 0

0 0 1 8 22 0 0 0 0 0 0 0

0 0 12 7 4 0 0 0 6 0 0 1

0 0 4 0 3 0 2 1 21 0 0 0

House 86

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

1

2

3

4

5

6

7

11

12

M
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0 0 1 2 5 0 13 0 1 0 7 2

2 0 2 3 0 0 13 0 0 0 8 0

0 0 0 1 12 0 11 0 0 0 4 3

2 0 1 1 11 0 9 0 1 0 2 3

9 0 0 1 15 0 1 0 0 1 4 0

3 0 0 0 26 0 0 0 0 0 1 0

0 0 0 0 31 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 2 1

1 0 0 2 10 0 9 0 1 1 4 2

House 91

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

10 0 1 30 2 0 3 0 3 0 0 0

9 0 0 40 4 0 2 0 1 0 0 0

7 0 0 43 7 0 1 0 4 0 0 0

6 0 0 13 11 0 0 0 0 0 0 0

16 0 0 0 15 0 0 0 0 0 0 0

0 0 0 10 16 0 0 0 0 0 0 0

0 0 0 2 29 0 0 0 0 0 0 0

1 0 0 4 26 0 0 0 0 0 0 0

1 0 0 8 20 0 1 0 0 0 0 0

7 0 0 12 11 0 1 0 0 0 0 0

7 0 0 18 4 0 1 0 0 0 0 0

5 0 0 17 0 0 9 0 0 0 0 0

House 92

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

28 0 0 0 2 0 0 0 0 0 1 0

27 0 0 0 4 0 0 0 0 0 8 1

34 0 0 2 20 0 0 0 0 0 6 0

29 0 0 0 1 0 0 0 0 0 0 0

25 0 0 1 5 0 0 0 0 0 0 0

22 0 0 0 7 0 0 0 0 0 0 1

28 0 1 0 2 0 0 0 0 0 0 0

23 0 0 1 7 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0

26 0 0 1 3 0 0 0 0 0 0 0

27 0 0 0 4 0 0 0 0 0 0 0

House 93

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

7 0 0 3 48 0 1 0 0 0 1 2

7 0 0 3 41 0 0 0 0 0 3 2

9 0 0 6 44 0 0 0 1 0 1 1

5 0 0 3 22 0 0 0 0 0 0 0

5 0 0 4 19 0 0 0 0 0 3 0

5 0 0 0 25 0 0 0 0 0 0 0

2 0 0 0 22 0 5 0 1 1 0 0

3 0 0 1 27 0 0 0 0 0 0 0

3 0 1 1 25 0 0 0 0 0 0 0

5 0 0 4 21 0 0 0 0 0 1 0

5 0 0 1 22 0 1 0 0 0 0 1

4 0 0 6 39 0 4 0 3 0 1 2

House 94

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

3 14 3 0 37 0 0 3 1 0 1 0

1 17 2 0 14 1 1 2 1 2 0 1

0 8 0 2 9 2 0 4 0 4 0 1

0 6 0 0 9 3 0 4 0 6 0 2

0 15 0 0 4 0 0 3 0 8 0 0

0 6 0 0 10 1 0 5 0 7 0 1

1 3 0 0 16 1 0 1 0 5 0 4

0 0 0 0 2 0 0 0 0 0 0 0

0 10 0 0 4 1 0 2 0 0 0 1

0 14 0 0 4 2 0 2 0 6 0 3

3 13 1 0 11 2 0 5 0 3 0 0

4 6 3 1 37 1 1 2 0 3 1 2

House 96

1 2 3 4 5 6 7 8 9 10 11 12
Cluster ID

4 0 4 9 35 2 1 0 0 0 1 6

6 0 0 5 42 0 0 0 0 1 0 2

2 0 0 1 59 0 0 0 0 0 0 0

0 0 0 0 30 0 0 0 0 0 0 0

0 0 0 0 31 0 0 0 0 0 0 0

0 0 0 0 30 0 0 0 0 0 0 0

0 0 1 0 30 0 0 0 0 0 0 0

0 0 0 0 31 0 0 0 0 0 0 0

0 0 0 0 30 0 0 0 0 0 0 0

2 0 0 0 30 0 0 0 0 0 0 0

5 0 1 6 45 0 1 0 1 0 1 0

9 0 0 14 37 0 0 0 0 0 1 0

House 97

FIGURE 10. Lattice heatmap of the monthly distribution of daily SOM + K-means electricity consumption profiles across the different houses.

fastest approach across all resolutions due to the reduction in
dimensionality, while SOM + K-means incurs a significant
computational burden, being repeatedly the most expensive
method. Despite this, SOM + K-means obtains the lowest
quantization error at all resolutions, reinforcing its ability
to capture finer details in the data compared to the SOM
approach.

However, this improvement in scores may not reflect a
better grouping process but rather a consequence of data
smoothing. As temporal resolution decreases, short-term
fluctuations and noise are attenuated, leading to similar
curves and simplifying the clustering problem. At higher
resolutions where more detail is preserved, such as 1 minute,
clustering becomes more challenging, resulting in lower
scores but potentially more meaningful distinctions between
patterns.

In addition to the metrics evaluation, a systematic analysis
of the clustering outputs across resolutions is needed to
reveal how temporal granularity shapes the practical rele-
vance of the resulting profiles. Fig. 11 illustrates how data
resolution affects the behavior of cluster 4 (one of the most
identifiable profiles) obtained using the SOM + K-means
approach for 12 clusters. Similarly, Fig. 12 depicts the
same outcome for cluster 3, one of the most asymmetrical
consumption profiles.

Observing Fig. 11 and Fig. 12, one can verify that, at finer
resolutions (e.g., 1 minute), the clusters capture detailed
behavioral signatures such as short appliance usage, cooking

peaks, or EV charging events. These nuances are critical
for demand response or anomaly detection applications,
which require high-precision control [9]. In contrast, these
specific features are smoothed at coarser resolutions (e.g.,
1 hour), resulting in broader and more uniform profiles that
may be more suitable for tariff design or long-term load
forecasting [6]. For instance, at the 1-minute resolution,
cluster 3 reveals a set of peak patterns in the late evening
and night that is lost at the 1-hour resolution.

Ultimately, this observation highlights the importance of
aligning temporal resolution with the intended application,
as the higher resolution may offer greater behavioral insight
at the cost of lower clustering compactness and higher
computational costs.

E. CASE STUDY: LISBON METROPOLITAN AREA

To further validate the generalizability of the proposed
methodology, an additional analysis was conducted focusing
exclusively on a subset of households located in the Lisbon
Metropolitan Area. This region, being the most densely pop-
ulated in Portugal, features diverse behavior and electricity
consumption patterns, making it a suitable test case for
evaluating the robustness of the clustering approach across
different urban dynamics.

From the original dataset, consisting of eighteen house-
holds from various municipalities across mainland Portugal,
we selected those located in the Lisbon region, corre-
sponding to ten families. The same data preprocessing and
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TABLE 4. Comparison of metrics for each approach, considering varying resolutions, for k = 12 clusters.

5-minute resolution K-means PCA + K-means SOM [4x3] SOM [21x21] + K-means

Silhouette Score 0.1126 0.1283 0.1291 0.1553

Davies-Bouldin Score 2.6133 2.4750 2.9940 2.5979

Computational Cost (s) 0.9834 0.1869 1.2286 16.8648

Quantization Error - - 1.4424 1.0978

15-minute resolution K-means PCA + K-means SOM [4x3] SOM [21x21] + K-means

Silhouette Score 0.1214 0.1499 0.1421 0.1596

Davies-Bouldin Score 2.3792 2.2667 2.4195 2.4306

Computational Cost (s) 0.2529 0.1816 0.6015 6.5450

Quantization Error - - 0.7698 0.5413

1-hour resolution K-means PCA + K-means SOM [4x3] SOM [21x21] + K-means

Silhouette Score 0.1455 0.1795 0.1671 0.1981

Davies-Bouldin Score 1.8968 1.8769 2.0480 1.8712

Computational Cost (s) 0.1702 0.0759 0.8714 3.4504

Quantization Error - - 0.2985 0.1827
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FIGURE 11. Comparison of SOM + K-means cluster 4 profiles across different temporal resolutions (1 min, 5 min, 15 min, and 1 h), for k = 12.
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FIGURE 12. Comparison of SOM + K-means cluster 3 profiles across different temporal resolutions (1 min, 5 min, 15 min, and 1 h), for k = 12.

clustering pipeline described in Section II was applied to
this smaller, region-specific group of houses. For this study,
the SOM + K-means method was chosen due to the better
overall results confirmed in Section III-C. The ideal number
of clusters obtained was six profiles, represented in Fig. 13,
with a silhouette score of 0.1761, a Davies-Bouldin score
of 1.9762, a computational cost of 83.7322 seconds, and a
quantization error of 2.4385.

Despite the reduction in sample size, the methodology
successfully identified consistent and interpretable consump-
tion profiles comparable to the results obtained when using
all households’ datasets. Specifically, the clusters identified
are virtually identical to some of those found previously

(recall Fig. 7), as expected.
This analysis demonstrates that the methodology is not

limited to a specific geographic or demographic context and
can be applied to any group of households. It also serves
as a practical example of how the method can be tailored
for local or municipal-level planning and decision-making,
which is particularly relevant for Distribution System Op-
erators (DSOs), urban planners, and energy analysts aiming
to understand localized energy consumption behavior.

IV. CONCLUSIONS AND FUTURE WORK
Energy consumption profiles are a critical component of
energy management strategies, particularly with the recent
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FIGURE 13. Representative daily consumption profiles for Lisbon
Metropolitan Area households, using SOM + K-means approach.

widespread adoption of smart meters, which has created
a pressing need to develop robust methodologies for ob-
taining, characterizing, and visualizing these profiles from
big data. This study evaluated multiple clustering methods,
including K-means, PCA + K-means, SOM, and SOM +
K-means, using data resolutions ranging from 1 minute
to 1 hour. By analyzing cluster profiles, quality metrics,
and computational costs, we demonstrated that temporal
resolution has a significant impact on clustering results,
the efficiency of the process, and the interpretability of the
findings. These results highlight the importance of aligning
temporal resolution with the specific goals of energy data
analysis and management.

Among the methods studied, hybrid approaches like
SOM combined with K-means consistently delivered the
best clustering quality across all tested scenarios, achiev-
ing the highest silhouette scores and lowest quantization
errors. This makes SOM + K-means particularly well-suited
for identifying nuanced patterns in high-resolution data.
However, its significantly higher computational cost may
limit its practical application in large datasets or resource-
constrained scenarios. Conversely, PCA combined with K-
means offers a good balance between performance and
computational efficiency, effectively handling large datasets
while maintaining meaningful profiles.

By compressing the data to its most essential features,
PCA facilitated a more efficient and computationally fea-
sible clustering process. The reduced dataset maintained
the ability to reveal meaningful patterns, enabling K-means
clustering to focus on the most relevant features. This
dimensionality reduction is particularly critical in high-
dimensional datasets, as it mitigates issues such as over-
fitting and the curse of dimensionality.

Using finer resolutions, such as 1-minute data, helps
capture detailed consumption patterns and variability but
comes with higher computational costs and lower scores

due to the added noise and short-term fluctuations. On
the other hand, lower resolutions, like 1 hour, flattened
these fluctuations, resulting in improved clustering metrics
such as the silhouette coefficient and Davies-Bouldin index.
However, these improvements often reflect the loss of fine-
grained details rather than inherently better clustering qual-
ity. The analysis of cluster 3 and cluster 4 across different
granularities further demonstrated the impact of temporal
resolution on clustering results. At 1-minute resolution,
subtle variations in energy use were preserved, providing de-
tailed insights into consumption patterns. Lower resolutions,
such as 15-minute and 1-hour data, revealed more generic
profiles, reducing variability within clusters and simplifying
the interpretation of results. These findings emphasize the
importance of tailoring temporal resolution to the specific
goals of the study: finer granularity for detailed, short-
term analyses and coarser resolutions for broader, long-
term insights. Understanding these transformations provides
a clearer view of the trade-offs between preserving detail
and achieving computational efficiency.

In summary, this study highlights the critical role of
temporal resolution in shaping clustering outcomes, compu-
tational requirements, and practical applications in energy
data analysis. The results demonstrate that hybrid methods,
particularly those combining PCA and SOM, effectively
improve clustering performance and model generalization,
making them valuable tools for large-scale time-series data
applications.

Future research should explore the proposed methodology
in this paper and seek to enhance it with new approaches,
validation metrics, or even parameters. The SOM could
improve by selecting more adapted initial weights for the
neurons. Several studies in other domains have explored
this topic [55], and applying similar methods to energy
consumption data could bring significant benefits. Another
aspect would be to create dynamic approaches that adjust the
resolution based on the complexity of the data, leveraging
the strengths of fine and coarse resolutions, thus reducing
the impact on real use cases. Furthermore, exploring the
generalizability of clustering models across different regions
or periods remains an open challenge, especially nowadays,
with consumption patterns changing due to electrification,
energy efficiency measures, or the growing adoption of
EVs [52]. Finally, integrating external factors, such as
climate or photovoltaic production, could also improve the
interpretability and value of the clustering results, allowing
for more targeted energy management strategies, accurate
forecasts, and sustainable energy solutions.
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