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Abstract

Load disaggregation has emerged as an effective tool for enabling smarter energy man-
agement in residential and commercial buildings. By providing appliance-level energy
consumption estimation from aggregate data, it supports energy efficiency initiatives,
demand-side management, and user awareness. However, several challenges remain in
improving the accuracy of energy disaggregation methods. For instance, the amount of
noise in energy consumption datasets can heavily impact the accuracy of disaggregation
algorithms, especially for low-power consumption appliances. While disaggregation per-
formance depends on hyperparameter tuning, the influence of data characteristics, such
as noise, on hyperparameter selection remains underexplored. This work investigates the
hypothesis that appliance-specific noise information can guide the selection of algorithm
hyperparameters, like the input sequence length, to maximize disaggregation accuracy.
The appliance-to-noise ratio metric is used to quantify the noise level relative to each
appliance’s energy consumption. Then, the selection of the input sequence length hyperpa-
rameter is investigated for each case by inspecting disaggregation performance. The results
indicate that the noise metric provides valuable guidance for selecting the input sequence
length, particularly for user-dependent appliances with more unpredictable usage patterns,
such as washing machines and electric kettles.

Keywords: load disaggregation; appliance-to-noise ratio; performance evaluation;
hyperparameter tuning; input sequence length

1. Introduction
Non-Intrusive Load Monitoring (NILM) [1], or load disaggregation, refers to a set

of signal processing and machine learning techniques used to estimate the individual
energy consumption of appliances by using the total energy consumption in the building
collected using a single sensor. In other words, the aggregate signal of the building is
disaggregated into individual appliance components. NILM’s scalability, cost-effectiveness,
and non-intrusive nature make it a practical solution for improving energy management
and efficiency [2].

NILM plays a vital role in the broader context of smart energy systems. By offering de-
tailed insights into individual appliance usage, it enables applications such as personalized
energy feedback, the detection of faulty appliances, improved demand forecasting, and
integration with home automation systems [3]. For utility providers, NILM can support
demand-side management programs and reduce the need for expensive submetering in-
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frastructure. From a policy standpoint, it can contribute to energy conservation goals and
more accurate load profiling [4].

The existence of noise in the aggregate signal affects appliance identification and
overall load disaggregation performance. Noise may arise from sensor errors or unmetered
appliances that introduce irregular consumption patterns. Formally, noise is quantified
as the remaining power in the aggregate readings once the appliances’ power has been
subtracted [5], as given by Equation (1):

ηt = yt −
M

∑
i=1

x(i)t (1)

The noise component poses a considerable challenge for extracting individual ap-
pliance signals from the aggregate energy consumption data. According to Dong et al.,
the probability of accurately distinguishing between different appliance events is reduced
when the noise level in the aggregate signal increases [6]. The energy signal becomes more
complex as a result of a higher percentage of unknown power [7]. Gupta et al. have cor-
roborated these findings, highlighting the significant impact of noise on the performance
of NILM algorithms [8]. The amount of noise can vary significantly across datasets due
to several factors, such as the number of available submeters. If a building contains many
appliances, and just a few are submetered, there will be a higher percentage of unknown
appliance energy consumption [9].

Removing noise from the aggregate signal (denoising) has been attempted to mitigate
its effects on disaggregation performance. However, denoised data do not accurately
reflect real-world conditions, potentially leading to misleading disaggregation performance
evaluations [7,10]. Therefore, efforts have been made to quantify, report, and assess the
sensitivity of load disaggregation accuracy relative to noise. The noise-to-aggregate ratio
(NAR) metric [5,11] was specifically proposed for NILM, enabling the measurement of the
total share of noise in an aggregate signal and assessing the load disaggregation method’s
sensitivity. Another noise measure used in NILM is the signal-to-noise ratio (SNR), which
is widely used in other machine learning disciplines. In this context, the SNR provides the
magnitude of the aggregate signal relative to the underlying noise. Meziane et al. used the
SNR to analyze the impact of noise on an event-based NILM method [12], while Lu et al.
also used it to assess the noise effect on disaggregation accuracy [13].

However, metrics like NAR or SNR do not capture the proportion of noise relative to
individual appliances. The disaggregation performance for a specific appliance is likely
to be affected by the level of noise, especially when the noise level is a significant fraction
of the appliance’s power [14]. Noise is more likely to overcome low-power appliances
like televisions than high-power appliances like washing machines, although this is not
captured by the NAR or SNR. Recently, the appliance-to-noise ratio (ANR) metric has been
proposed to quantify noise relative to the energy consumption of individual appliances.

Disaggregation accuracy strongly depends on hyperparameters such as epochs, input
sequence length (ISL), and event threshold [4,15]. The event threshold hyperparameter, in
particular, interferes directly with the number of events to be counted for a given appliance
and should be fine-tuned. The hyperparameter value should be high enough to discard
minor voltage as an event and low enough to avoid missing events [16,17].

The ISL is another relevant hyperparameter, which is provided as input to recent
deep learning algorithms such as the sequence-to-sequence (S2S) and sequence-to-point
(S2P) [18], as well as the more recent bidirectional transformer for NILM (BERT4NILM)[19].
ISL is the length of the sequence of mains readings given as input to the disaggregation
model, which is then used for the prediction of a sequence of equal length for the target
appliances. The ISL hyperparameter must be carefully selected; otherwise, the input
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sequence may be inadequate for effectively training the algorithm and producing accurate
appliance-level predictions [3,20]. In this respect, the analysis of data characteristics like
usage patterns, appliance power consumption, noise, and sample rate can provide relevant
information to improve hyperparameter selection [21–24].

However, the literature concerning the integration of data characteristics in the se-
lection of hyperparameters is still scarce. Furthermore, although the existence of noise in
energy signals has been observed to impact load disaggregation accuracy, the potential of
noise information for improving hyperparameter selection has not been further researched.
Metrics like ANR enable incorporating noise information into this challenge.

Motivated by the need to enhance NILM accuracy under realistic, noise-prone con-
ditions, this work investigates the hypothesis that appliance-specific noise information,
given by the ANR, could be utilized for informed selection of algorithm hyperparameters,
like ISL, in energy disaggregation. The hypothesis considers that, for a given household
appliance, if the ANR is low (either due to high noise or low appliance power consump-
tion), the algorithm performance should increase for higher ISL values, i.e., with high
sequence length, the estimation of appliance power consumption is expected to be more
accurate. This work attempts to validate this hypothesis to ensure the accurate and reliable
prediction of appliance energy consumption. For this purpose, the ANR is computed, and
the existence of patterns in algorithm performances across ISL values is assessed for various
appliances using real-world data.

The remainder of the paper is structured as follows: Section 2 provides the background
and related work; Section 3 describes the dataset, the definition of ANR, and the methods
utilized to investigate the initial hypothesis; Section 4 includes results and discussion; and
finally, Section 5 establishes the main conclusions, research implications, and future work.

2. Related Work
Noise is a frequent component of energy signals that affects the accuracy of load

disaggregation algorithms. Noise metrics like NAR and SNR have been considered for
quantifying noise, with SNR being a widely known metric across machine learning dis-
ciplines that has been utilized in NILM (e.g., [12,13]) and NAR proposed specifically for
NILM [5,7]. At the appliance level, the proportion of noise can be significant, especially
for low-power appliances, reducing the disaggregation accuracy. However, these metrics
do not capture the relative level of noise compared to the power consumption of indi-
vidual appliances. Gois and Pereira proposed the ANR metric to measure and report
appliance-specific noise information in datasets, enabling a detailed noise analysis [14].
The applicability of ANR was demonstrated across different time resolutions, allowing the
identification of patterns in disaggregation accuracy across distinct noise levels.

The disaggregation accuracy is intrinsically related to the configuration of algorithm
hyperparameters, which include the number of epochs, batch size, ISL, and event thresh-
old [4,15]. For ISL, in particular, the length of the data sequences used for training the
algorithm is essential for obtaining the best predictions of appliance energy consump-
tion [3,20]. According to Reinhardt et al., sensitivity analysis of hyperparameters should
be considered to achieve a more reliable algorithm performance [23]. Bousbiat et al. sug-
gested the utilization of optimization techniques for hyperparameter selection, using the
functionalities available in the Deep-NILMTK framework [22].

Studies recommend leveraging usage patterns, noise, and sample rate when selecting
algorithm hyperparameters (such as ISL) for models like S2S, S2P, and BERT4NILM [21,23,24].
Bousbiat et al. also suggest the consideration of power consumption variation between high-
power and low-power appliances for ISL selection [22]. This implies that ISL selection in
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algorithms such as S2S, S2P, and BERT4NILM likely varies across appliance types, depending
on user behavior and power consumption characteristics.

While previous studies have explored the impact of noise on disaggregation accuracy,
there has been limited investigation into how such data characteristics can inform hyper-
parameter selection. In particular, most prior works approached hyperparameter tuning
using default values, trial-and-error, or brute-force search methods [22,23], which are often
computationally intensive and not tailored to specific data conditions. This paper addresses
this gap by introducing a data-driven approach that incorporates appliance-specific noise
information into hyperparameter selection. By leveraging the ANR metric, the proposed
method enables a more informed and adaptive selection of the ISL hyperparameter, aiming
to enhance disaggregation performance across a variety of appliances.

3. Materials and Methods
This section introduces the definition of the ANR metric, the dataset, the NILM

algorithm, the performance metric, and the experiments conducted for investigating the
initial hypothesis.

3.1. Appliance-to-Noise Ratio

The ANR [14] metric has been proposed for assessing the proportion of noise relative
to an individual appliance’s electricity consumption. For a specific appliance k, the metric’s
formula is given by Equation (2):

ANRk =
1
T

T

∑
t=1

x(k)t

|yt − ∑M
m=1 x(m)

t |
(2)

where x(k)t is the actual power of appliance k at time t, and yt is the total power consumption
at time t. The denominator provides the amount of noise at time t. This metric averages the
instant ratios of appliance electricity consumption and noise. Each instant ratio contributes
to the final score, summarizing the impact of noise on an appliance over time. Only instant
ratios with non-zero noise power (denominators greater than zero) are considered for the
metric calculation; otherwise, the ANR would be undefined.

3.2. Dataset

The REFIT [25] dataset includes active and apparent power measurements at the
aggregate and ground-truth levels at the time resolution of 8 s. The data was collected
continuously over 2 years (2013–2015) from 20 houses located in Loughborough, the United
Kingdom, while household occupants were conducting their usual domestic routines.
The households are originally numbered from 1–13 and 15–21, which is the naming con-
vention also used in this work.

The houses under study were equipped with plug meters that collected the energy con-
sumption data from the 9 appliances with the highest demand. The main targets included
cold appliances (like refrigerators and freezers), cooking appliances (like microwaves and
electric kettles), information and communication technology (like computers and screens),
and utility room appliances (washing machines and dishwashers). The television and
washing machine were the most submetered appliances across the houses.

The REFIT dataset was chosen due to the combination of properties rarely found in
other publicly available datasets, such as long-term measurements, relatively high sample
rate, and appliance-level and aggregate data across multiple households. Furthermore,
existing load disaggregation toolkits contain functionality that facilitates loading and
analysis for this specific dataset, making it more convenient for this work.
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3.3. Algorithm and Performance Metric

Despite the rise of attention mechanisms in NILM with convolutional and recurrent
neural networks, the recent development of natural language processing brought the BERT
model [26], originally proposed for text classification tasks, into the field of NILM. The
proposed architecture for NILM, known as BERT4NILM [19], contains an embedding
module, transformer layers, and a multilayer perceptron output layer, operating with
a self-attention mechanism. The network takes sequential data with a fixed length and
predicts appliance energy usage with an output of the same shape, while the appliance
states are additionally computed by comparing the on-thresholds defined by the researcher.
The bidirectional structure of BERT captures time dependencies and patterns in the data,
which are suitable for improving load disaggregation accuracy. This innovative approach
rivals other recent deep learning NILM algorithms, showing the potential of BERT4NILM.

The selected metric for evaluating the algorithm’s accuracy is the Match Rate (MR),
which is a normalized metric that evaluates the overlapping rate of the true and estimated
energy, varying between 0 (weak match) and 1 (strong match). MR can be calculated as per
Equation (3):

MR(ŷ, y) = ∑T
t=1 min{ŷt, yt}

∑T
t=1 max{ŷt, yt}

(3)

where yt is the actual power consumption for appliance k at time t and ŷt is the estimated
power consumption for appliance k at time t. The MR was selected for this analysis due to
the suitability of this metric for evaluating the performance of NILM algorithms observed
in previous works. The metric’s normalization constant corresponds to the total appliance
energy consumption (or more, in cases of overestimation), aligning with recommendations
by Garcia et al. to better quantify estimation errors [27]. In addition, MR has been observed
to adequately provide information on disaggregation performance for diverse estimation
scenarios, like overestimation and underestimation, being easily interpreted compared to
other metrics [28].

3.4. Experiment Setup

This experiment investigates the hypothesis that the information provided by the
ANR metric can guide the selection of the ISL hyperparameter to improve disaggregation
performance.

This analysis focuses on household data from the REFIT dataset, considering different
appliances (washing machine, electric kettle, fridge-freezer, and fridge) to generalize the
hypothesis testing. The washing machines, fridges, and fridge-freezers are multistate
(type II) appliances, while electric kettles are on/off (type I) appliances [29,30]. The washing
machines have three modes of operation: in use, standby, and switched off. Also, the
washing machines are user-dependent, meaning the operation patterns vary for different
user behaviors. The fridges and fridge-freezers, however, are user-independent, as their
operation is continuous and cyclic throughout the day between zero and a set of power
levels under thermostatic control. The electric kettles have two modes of operation (on/off)
and are user-dependent.

The experiments are conducted between 20 June 2014 and 20 October 2014 (4 months).
The chosen data resolution is one sample per minute, balancing data granularity and
computational cost. For each appliance, the BERT4NILM is trained in 75% of the sample
(three months) and test in 25% of the sample data (one month). The time series rolling
k-cross validation is utilized, as it is superior to traditional k-fold cross-validation for
sequential energy data. The number of folds k is set at 4, creating folds of approximately
1 month. The MR metric evaluates the accuracy of BERT4NILM estimations for each case.
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The BERT4NILM algorithm is computed for different values of ISL for each appliance:
15, 30, 60, 120, and 240. The range from 15 min to 240 min sequences was selected to balance
short and long input lengths while capturing meaningful performance trends through
intermediate values (30, 60, and 120). ISL values below 15 would result in sequences that
are too short, while those above 240 would produce excessively long input windows.

To test the initial hypothesis, the ANR was calculated for each appliance across the
households. Then, for fixed ANR values, it was assessed for each case whether patterns
arise in the MR scores across different ISL values. For an appliance in a given household, if
the ANR was low (high noise and/or low appliance power consumption), it was expected
that the BERT4NILM performance (shown through the MR score) would increase for
higher ISL values. The assessment of this hypothesis was crucial for ensuring that better
performance was obtained for each case.

3.5. Hardware and Software

Hardware-wise, the computer comprised an Intel i7-8700k CPU, an NVIDIA 1080TI
graphics card, and 64 GB of RAM. Software-wise, the experiments conducted throughout
this work were carried out using Python 3.8.16, with Keras [31] running on the Tensor-
flow [32] backend. Python’s package Deep-NILMTK [22] was considered for its compre-
hensive support of functionalities for running experiments, such as data analysis and
preprocessing tools, experiment management and templating, implementation of recent
deep learning algorithms like BERT4NILM, and availability for changing the configurations
of algorithm hyperparameters easily. Deep-NILMTK enhances functionalities over earlier
toolkits like NILMTK [15,33]. To reduce the computation time of BERT4NILM, the cuDNN
library (version 8.1.0) was utilized to accelerate the GPU calculations.

4. Results and Discussion
Table 1 shows the ANR scores for the washing machine across different houses and

the respective MR scores for different ISL values. MR scores are generally lower for shorter
ISL values (15, 30, and 60), but tend to rise as ISL increases, which was particularly verified
for households 3, 4, 5, 7, 10, 13, and 15.

ANR scores are generally low across households, with exceptions in households 5,
17, and 21. According to the definition of ANR, low appliance power consumption or
sufficiently high noise levels may explain low ANR values for the washing machine across
the houses. For 56% of the house’s washing machines with low ANRs, the MR scores
increase significantly as ISL increased. As such, there is evidence that selecting a higher
ISL value in the context of a low ANR can help improve the MR scores for a washing
machine. This is in line with the fact that washing machines are user-dependent appliances,
with possibly unpredictable usage patterns; hence, a higher ISL value may be required to
increase the disaggregation performance.

Next, we investigated whether such a relationship between the ANR and the selection
of ISL held for the fridge-freezer, which is a user-independent appliance. From Table 2,
the ANRs for the fridge-freezer seemed to vary significantly across the households, with
higher ANR values in households 5 and 18, and much lower ANR values in households 10,
11, and 15. In contrast to the washing machine, for most households, the MR scores did not
vary significantly with the ISL in general, independently of the ANR values. This suggests
that the noise levels do not seem to impact the selection of ISL for this appliance. This may
be attributed to the fridge-freezer’s user-independent, cyclic operation; thus, the energy
signal has a well-defined pattern that can be detected with a relatively good performance,
independently of the choice of ISL.
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Table 1. ANR and MR scores for the washing machine considering different ISL values across the
households. A darker color represents a higher ANR, as well as a higher MR score across ISL values.

WM Households ANR ISL
15 30 60 120 240

1 0.08 0 0 0.002 0 0.06
2 0.07 0 0 0 0.005 0.06
3 0.08 0.03 0.004 0.002 0.08 0.12
4 0.06 0.002 0.005 0.07 0.17 0.13
5 0.21 0 0.007 0 0.03 0.08
6 0.01 0 0 0 0.003 0.002
7 0.08 0 0 0.07 0.09 0.17
8 0.09 0 0.002 0.001 0.002 0.02
9 0.05 0 0 0 0.009 0.02
10 0.09 0 0.02 0.006 0.11 0.14
11 0.06 0 0 0 0 0.003
13 0.06 0 0 0.003 0.03 0.18
15 0.08 0.002 0.003 0.04 0.19 0.21
16 0.05 0 0.001 0.01 0.03 0.07
17 0.13 0 0 0 0.002 0.04
18 0.02 0 0 0 0.001 0
19 0.08 0 0 0 0 0.002
20 0.08 0 0 0 0.004 0.03
21 0.17 0 0 0 0 0

Table 2. ANR and MR scores for the fridge-freezer considering different ISL values across the
households. A darker color represents a higher ANR, as well as a higher MR score across ISL values.

FFZ Households ANR ISL
15 30 60 120 240

2 0.47 0.31 0.29 0.31 0.29 0.27
3 0.45 0.59 0.62 0.59 0.62 0.58
4 0.31 0.19 0.18 0.23 0.23 0.3
5 1.81 0.44 0.43 0.45 0.39 0.46
9 0.32 0.32 0.34 0.35 0.34 0.33
10 0.18 0.15 0.12 0.14 0.17 0.11
11 0.17 0.25 0.21 0.23 0.23 0.22
12 0.5 0.22 0.17 0.17 0.22 0.21
15 0.24 0.26 0.27 0.22 0.22 0.23
16 0.38 0.36 0.34 0.4 0.4 0.39
17 0.65 0.27 0.22 0.26 0.22 0.19
18 1.6 0.4 0.41 0.42 0.41 0.43
19 0.83 0.41 0.38 0.42 0.4 0.38
21 0.61 0.35 0.36 0.37 0.36 0.36

The link between the ANR and ISL selection appears to be influenced by appliance
usage patterns. Next, an analysis was conducted for the electric kettle and the fridge to
check if the initial hypothesis held. For the electric kettle, Table 3 indicates that the MR
scores tend to increase when the ISL increases, particularly for households 3, 4, 7, 8, and
20. The ANRs for the electric kettle were generally low across the households, except
for households 5, 9, 11, and 17. For 90% of the households with low ANRs, MR scores
significantly increased with ISL. This supports the hypothesis that a longer ISL improves
MR scores for electric kettles in low-ANR conditions. Similarly to the washing machine,
electric kettles are also user-dependent, with an unpredictable usage pattern, and the initial
hypothesis seems to be verified.



Energies 2025, 18, 3847 8 of 11

Table 3. ANR and MR scores for the electric kettle considering different ISL values across the
households. A darker color represents a higher ANR, as well as a higher MR score across ISL values.

KT Households ANR ISL
15 30 60 120 240

2 0.09 0.01 0.02 0.17 0.18 0.24
3 0.01 0.01 0.01 0.02 0.12 0.13
4 0.01 0.01 0.11 0.13 0.28 0.2
5 0.17 0.02 0.02 0.03 0.18 0.23
6 0.11 0.04 0.23 0.2 0.3 0.27
7 0.01 0.01 0.01 0.01 0.1 0.07
8 0.01 0.01 0.01 0.17 0.17 0.22
9 0.15 0.01 0.11 0.15 0.14 0.18
11 0.2 0.01 0.01 0.02 0.18 0.17
12 0.05 0.03 0.03 0.02 0.03 0.005
13 0.05 0.03 0.03 0.03 0.16 0.14
17 0.39 0.02 0.03 0.06 0.22 0.18
19 0.11 0.02 0.21 0.19 0.29 0.19
20 0.01 0.16 0.03 0.3 0.24 0.32

Regarding the fridge, according to Table 4, the ANRs seem to vary significantly across
the households, with higher values for households 18 and 20 in contrast to households 4, 8,
and 11. As with the fridge-freezer, MR scores show minimal variation with changes in ISL
across most households, regardless of the corresponding ANR values. Hence, the noise
levels do not seem to influence the choice of the ISL for the fridge.

Therefore, there is evidence that the initial hypothesis is validated for user-dependent
appliances, with more unpredictable usage patterns. For user-independent appliances,
like fridge-freezers and fridges, the hypothesis does not seem to hold, which may be
related to the fact that these appliances have recurrent operating patterns. Nevertheless, to
solidify the conclusions obtained in this work, it would be relevant to investigate the initial
hypothesis for other user-dependent and user-independent appliances. The use of different
sources of data would also be important for generalization.

Table 4. ANR and MR scores for the fridge considering different ISL values across the households. A
darker color represents a higher ANR, as well as a higher MR score across ISL values.

FRI Households ANR ISL
15 30 60 120 240

1 0.15 0.14 0.15 0.16 0.16 0.15
4 0.1 0.14 0.14 0.13 0.14 0.14
7 0.13 0.13 0.14 0.14 0.15 0.13
8 0.09 0.12 0.14 0.13 0.13 0.15
11 0 0 0.003 0.04 0 0
18 0.38 0.14 0.16 0.13 0.14 0.12
20 0.38 0.32 0.34 0.34 0.32 0.33

The code for reproducing the experiments shown in Tables 1–4 is available in https://
anonymous.4open.science/r/Hyperparameter-Tuning-in-Load-Disaggregation-using-App
liance-specific-Noise-Information-ADEF (accessed on 15 May 2025).

5. Conclusions
This work investigates the hypothesis that noise information can be used for guiding

the selection of algorithm hyperparameters for maximizing load disaggregation accuracy.
The recently proposed ANR metric was used to quantify appliance-specific noise. Consider-

https://anonymous.4open.science/r/Hyperparameter-Tuning-in-Load-Disaggregation-using-Appliance-specific-Noise-Information-ADEF
https://anonymous.4open.science/r/Hyperparameter-Tuning-in-Load-Disaggregation-using-Appliance-specific-Noise-Information-ADEF
https://anonymous.4open.science/r/Hyperparameter-Tuning-in-Load-Disaggregation-using-Appliance-specific-Noise-Information-ADEF
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ing the ANR scores, the choice of the ISL hyperparameter was investigated across different
household appliances. The results show that, for specific usage patterns of appliances,
the initial hypothesis is verified. For user-dependent appliances with less predictable
usage patterns, such as washing machines and electric kettles, a high ANR indicates that a
longer ISL may enhance disaggregation accuracy. However, for appliances with continuous
cyclic operation, like fridges and fridge-freezers, the initial hypothesis does not seem to be
verified, as the ANR does not impact the choice of the ISL.

This study advances out understanding of hyperparameter selection in NILM, show-
ing that noise information can help maximize disaggregation accuracy. This contribution
is particularly relevant for the deployment of NILM systems in realistic settings, where
noise is present and can hinder model performance. By adapting hyperparameter tuning
to data-specific characteristics, such as appliance-level noise, it is possible to improve the
robustness and applicability of NILM.

Although the objectives of this work have been achieved, some limitations could be
addressed in future work. Testing the initial hypothesis on additional appliances would
improve generalizability. In addition, while the REFIT dataset includes both aggregate
and appliance-level energy data from a diverse set of households, being representative of
different types of users, further generalization of the conclusions would require that the
hypothesis be tested in datasets from different geographies.

Future work could explore additional hypotheses, such as assessing whether the
analysis of noise may help select other algorithm hyperparameters. The analysis of usage
patterns and anomaly detection techniques from other machine learning disciplines could
also be considered for studying hyperparameter selection, along with noise. Furthermore,
it would be relevant to investigate whether certain NILM algorithms are inherently more
robust to noise, independent of hyperparameter tuning or appliance characteristics. Future
work could involve a comparative analysis of algorithmic sensitivity to noise, improving
our understanding of model robustness under real-world conditions. Although prior work
has shown that usage patterns are relevant for ISL selection, conducting more experiments
would be important to support this hypothesis.
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NAR Noise-to-Aggregate Ratio
NILM Non-intrusive Load Monitoring
BERT4NILM Bidirectional Transformer for NILM
SNR Signal-to-Noise Ratio
S2P Sequence-to-Point
S2S Sequence-to-Sequence
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