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Abstract. Accurate Solar Photovoltaics (PV) power forecasting is es-
sential for the stability and efficiency of modern smart grids, but tra-
ditional centralized Machine Learning (ML) approaches raise significant
data privacy concerns for prosumers. Federated Learning (FL) offers a
privacy-preserving alternative by enabling collaborative model training
without sharing raw data. This paper presents a comprehensive, real-
world demonstration of a FL framework for PV power forecasting. We
deployed a system using five prosumers from Madeira Island, with Rasp-
berry Pi devices for local data collection and dedicated cloud servers for
federated training. The system incorporates an automated pipeline for
real-time inference, generating 24-hour forecasts with a sample rate of 15
minutes. Results from offline evaluations showed that the model achieved
reasonable accuracy, with an average Normalised Root Mean Squared
Error (NRMSE) of 0.08 and values reaching as low as 0.06. In the live
deployment, real-time performance was slightly worse (NRMSE of 0.12),
highlighting practical challenges. A relevant finding is the significant im-
pact of data source consistency: using a different weather data source for
inference than for training led to measurable performance degradation.
This work validates the feasibility of FL for privacy-preserving energy
forecasting and highlights the critical importance of maintaining consis-
tent data pipelines in real-world deployments.

Keywords: Federated Learning · PV Power Forecasting · Smart Grids
· Real-World Demonstration · Distributed Energy Resources.

1 Introduction

The increasing integration of Renewable Energy Sourcess (RESs), particularly
distributed Solar Photovoltaics (PV) systems, is transforming modern power
grids. While this transition is crucial for sustainability, it introduces significant
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challenges in grid management due to the intermittent and decentralized nature
of solar power generation [18]. Accurate forecasting of PV output is paramount
for grid operators to ensure stability, optimize energy dispatch, and manage Dis-
tributed Energy Resourcess (DERs) effectively. However, traditional ML models
for forecasting typically require centralizing large amounts of historical data from
individual prosumers, which raises substantial privacy and data ownership con-
cerns [8]. Consequently, there is a pressing need for a collaborative approach to
PV forecasting in residential settings that can improve accuracy by leveraging
data from multiple households, without compromising the privacy of individual
prosumers [1, 6].

In this regard, Federated Learning (FL) has emerged as a powerful paradigm
to address this problem. As a decentralized ML approach, FL allows multiple
parties to collaboratively train a shared prediction model without exchanging
their raw local data [11]. Instead, each participant trains a model on their own
data, and only the resulting model parameters are sent to a central server for
aggregation. This process enables the creation of a robust global model that
learns from diverse datasets while preserving privacy [12].

While the principles of FL are well-established, comprehensive end-to-end
demonstrations in the energy sector remain limited [3, 21]. This paper aims to
bridge this gap by providing a detailed account of the design, implementation,
and evaluation of a real-world FL system for PV power forecasting. The key
contributions are as follows:

– The design and real-world deployment of a complete FL system, from data
acquisition on edge devices (Raspberry Pi) to cloud-based federated training
and real-time inference.

– A comprehensive performance analysis in both offline and live operational
settings, providing insights into real-world effectiveness.

– A comparative analysis of forecast accuracy when using different weather
data sources for training versus inference, quantifying the impact of data
pipeline consistency.

This paper is organized as follows. Section 2 reviews related work in PV feder-
ated learning forecasting. Section 3 details the system design and methodology,
including the forecasting model, the FL framework, and the forecasting algo-
rithm. Section 4 describes the experimental setup, specifying the datasets and
evaluation metrics. Section 5 presents and discusses the results from both offline
and real-time evaluations. Finally, Section 6 concludes the paper and suggests
directions for future work.

2 Related Works

FL is being actively explored in energy domains to forecast solar power and
manage smart grids. For instance, Misra et al. proposed a framework to address
the critical challenge of data imbalance in distributed load forecasting, demon-
strating improved accuracy on real-world smart meter data while preserving
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user privacy as the model was trained on-site, sharing only model updates with
a central server for aggregation [12]. This star-topology architecture (clients ↔
server) is common. Riedel et al. [19] report a federated LSTM/GRU model for
residential PV feed-in forecasting, achieving high accuracy while using differen-
tial privacy to protect household patterns. These works primarily use standard
aggregation algorithms like Federated Averaging (FedAvg). More advanced ap-
proaches tackle the challenge of data heterogeneity. The FedCCL framework, for
instance, uses location-based clustering before training to improve accuracy and
stability [10].

Deploying FL systems from controlled simulations to real-world applications
introduces significant practical hurdles. Experience from pioneering deployments
in mobile systems and healthcare has highlighted key obstacles that must be over-
come for a successful implementation [8, 20]. These well-documented challenges
are broadly applicable and include statistical heterogeneity of data (Non-IID
data), systems heterogeneity across clients, communication bottlenecks, and en-
suring fairness for all participants [8]. In the context of residential PV forecasting,
these issues are particularly pronounced due to vast differences in household PV
installation sizes, panel orientation, and localized microclimates.

In summary, while many studies have explored FL for energy forecasting via
simulation, comprehensive, end-to-end demonstrations that address personaliza-
tion, fairness, and communication efficiency in a real-world setting are rare. This
paper helps fill that gap by documenting the infrastructure, processes, and prac-
tical challenges of an end-to-end FL system for PV power forecasting, offering a
valuable case study.

3 System Design and Methodology

This section presents the system architecture, data processing pipeline, the fed-
erated learning methodology used in this work, and the implemented privacy
and security mechanisms.

3.1 System Architecture

We deployed a testbed using five prosumers from the Madeira Island Prosumers
dataset [17]. The architecture is designed to handle real-world constraints, such
as the limited computational power of edge devices.

– Edge Layer: Each prosumer’s residence is equipped with a Raspberry Pi
3 Model B device (featuring an ARMv7 processor and 1GB of RAM) re-
sponsible for collecting and storing local PV operational data at 1-second
intervals [18].

– Client Server Layer: Due to the 32-bit architecture of the Raspberry Pis
being incompatible with the required 64-bit Python packages, model training
is not performed at the extreme edge. Instead, data from the Raspberry Pis
is periodically synchronized with five dedicated client servers hosted on the
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Cloud, one for each prosumer. These 64-bit servers (each with an Arm64
processor and 4GB of RAM) execute the local model training.

– Central Server Layer: A sixth cloud server acts as the central Federated
Learning server. It coordinates the training process, distributes the global
model, and aggregates incoming model updates from the client servers.

This hybrid architecture is depicted in Figure 1. A fully automated pipeline
was also developed for real-time inference, as shown in Figure 2. This pipeline
handles real-time PV production data syncing, daily weather forecast downloads,
and hourly forecast generation.

FL Client 5
Hetzner

FL Server
Hetzner

FL Client 2
Hetzner

Prosumer 2
Raspberry Pi

Prosumer 5
Raspberry Pi

FL Client 1
Hetzner

Prosumer 1
Raspberry Pi

Fig. 1: Overview of the federated learning infrastructure, showing data flow from
edge Raspberry Pi devices to dedicated cloud client servers for training, coordi-
nated by a central FL server.
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Fig. 2: The real-time inference architecture. Data is synced from the edge, com-
bined with weather forecasts, and fed into the trained model on the client server
to generate and store predictions.

3.2 Data Collection and Preprocessing

Data preprocessing and feature engineering are performed locally on each client
server to preserve privacy. To ensure consistency and effective aggregation, stan-
dardized protocols were established.

– Data Collection: Raw PV power data is collected at 1-second intervals at
the edge. This data was aggregated into 15-minute mean values to match
the temporal resolution of the weather data, which was compiled from two
distinct sources using the approximate coordinates of each prosumer. For
model training, we used historical solar irradiation data from the Copernicus
dataset [5], which offers high resolution of at least one-minute intervals for up
to two days prior. For real-time inference, we used solar irradiance forecasts
from the Open-Meteo API [14], which provides both the upcoming day and
the two preceding days’ forecasts at 15-minute resolution.

– Feature Set: A common set of input features was used by all clients, com-
prising two days of historical PV power and Global Horizontal Irradiation
(GHI), along with one day of forecasted GHI and calendar features (day of
year, week, hour, season).

– Preprocessing Steps: All clients applied a common preprocessing proce-
dure consisting of min–max normalization and input sequence formation. For
real-time inference, a key step was the conversion of weather forecast data.
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The model was trained on historical solar irradiation (Wh/m2), whereas the
forecasted data is provided as solar irradiance (W/m2). To enable the use of
forecasted values as model inputs, we convert irradiance to irradiation using
Equation (1).

Irradiation(Wh/m2) =
Irradiance(W/m2)

4
(1)

3.3 Federated Learning Methodology

The FL process was implemented using the platform developed within the ALAMO
project [15], which provided the infrastructure for orchestrating client-server in-
teractions, managing data pipelines, and executing training tasks across dis-
tributed edge devices.

– Forecasting Model: The base algorithm employed is FPSeq2Q, a proba-
bilistic sequence-to-quantile model based on Quantile Regression (QR) [7].
For this demonstration, we focused on deterministic forecasting by averaging
the predicted quantiles to generate a single point estimate.

– Flower Framework: The FL process was executed using the Flower de-
ployment engine [4], which manages orchestration between the clients and
the central server.

– FL Algorithm: The federation was carried out over 15 communication
rounds, using the standard FedAvg aggregation algorithm. In each round,
two randomly selected clients participated in local training. Selecting two
clients per round provided a balance between computational efficiency and
statistical diversity in the aggregated updates, while maintaining manageable
communication costs.

– Model Training: Local training at each client was configured to run for 50
epochs per round. This number was determined to be sufficient for substan-
tial local model improvement while mitigating the risk of client drift, where
local models diverge excessively from the global objective.

3.4 Privacy and Security Considerations

The core FL framework inherently preserves privacy by keeping raw data local-
ized on each client’s server. Data never leaves the client’s control. To further
enhance system security, two layers of encrypted communication were imple-
mented:

– Local Data Synchronization: Data transfers from the edge device (Rasp-
berry Pi) to the client server were secured via SSH tunnels using shared
public keys, preventing unauthorized access during synchronization.

– Federated Communication: All interactions between client servers and
the central FL server were protected using Transport Layer Security (TLS),
as provided by the Flower framework built on gRPC. TLS ensures end-to-
end encryption, maintaining the confidentiality and integrity of all model
updates and metadata during transmission.
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Together, these security mechanisms provide robust protection against threats
like Man-in-the-Middle (MitM) attacks and eavesdropping, thereby establishing
the fundamental security posture required for trustworthy, privacy-respecting
collaboration.

4 Experimental Setup

This section outlines the case study and evaluation strategy used to validate the
proposed framework.

4.1 The 5-Household Case Study

The demonstration was conducted with five prosumers from Madeira Island,
Portugal. These prosumers exhibit heterogeneity in their PV installations and
building types, offering a realistic and diverse testbed for evaluating the FL
model. Detailed characteristics of each prosumer are presented in Table 1. Note
that for Prosumer 1, who upgraded its PV installation during the data collection,
PV power data was scaled during evaluation to match the capacity used during
training. The training and offline evaluation datasets are summarized in Table 2,
with time periods selected based on data availability, prioritizing one full year
of consecutive data points.

Table 1: Details of the prosumers used in the real-world demonstration.
ID Type Historical Data Peak PV (kWp)
1 House 23/06/2018 - 31/12/2023 1.50a

2 House 01/05/2018 - 01/03/2022 2.70
3 House 22/11/2019 - 21/12/2023 0.75
4 Apartment 10/07/2018 - 31/12/2023 0.50
5 Apartment 10/07/2018 - 31/12/2023 0.50

aThis prosumer upgraded the installation to 2.25kWp after 2019.

Table 2: Data periods used for training and offline evaluation.
ID Training Period Offline Evaluation Period
1 01/01/2019 - 31/12/2019 01/01/2022 - 31/12/2022
2 01/01/2019 - 31/12/2019 01/01/2021 - 31/12/2021
3 01/01/2020 - 31/12/2020 01/01/2023 - 31/12/2023
4 01/01/2019 - 31/12/2019 01/01/2023 - 31/12/2023
5 10/07/2018 - 20/04/2019 11/08/2022 - 28/06/2023
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4.2 Performance Evaluation Metrics

To evaluate the model’s predictive accuracy, we selected two metrics widely used
in PV forecasting literature: the Root Mean Squared Error (RMSE) and the
Normalised Root Mean Squared Error (NRMSE) [2]. The RMSE is a standard
regression metric that effectively penalizes large prediction errors, which are
particularly undesirable in grid management and energy scheduling applications.

To enable a fair and direct comparison of forecasting performance across
households with different PV array sizes, we use the NRMSE. This metric is
calculated by normalizing the RMSE of each household by its installed peak
power (Ppeak) [13]. For our analysis, both metrics are computed for each 24-
hour forecast period, and aggregated results (e.g., per season or per week) are
then reported.

5 Results and Discussion

This section reports offline and real-time results for the five-household case study.
All data and analysis scripts are publicly available on a Open Sciente Framework
(OSF) repository [16] to ensure reproducibility.

5.1 Offline Operation

Offline Predictive Performance: The FL forecasting model was initially
evaluated offline using historical data from each prosumer.

As summarized in Table 3, the model’s performance varied across the five
prosumers. Prosumer 1 demonstrated the best performance, with the lowest
NRMSE value of 0.06 ±0.02. Conversely, Prosumers 4 and 5 exhibited the highest
NRMSE, both with values of 0.09 ±0.03.

Table 3: Total Performance Results for Offline Evaluation of Prosumers.

ID
Total

RMSE NRMSE
1 139.13 ±40.22 0.06 ±0.02
2 203.99 ±65.02 0.08 ±0.02
3 63.05 ±20.53 0.08 ±0.03
4 38.26 ±14.83 0.09 ±0.03
5 45.70 ±14.74 0.09 ±0.03

Table 4 and Figure 3 present a detailed comparison of the forecasting per-
formance across seasons, highlighting the distinct data characteristics of each
prosumer.

Forecasting performance varies across seasons and prosumers, with clear dif-
ferences highlighted by the seasonal RMSE and NRMSE results. Prosumers 2,
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3, and 5 exhibit higher errors during winter, consistent with increased weather
variability and lower irradiance in this season. For example, Prosumer 2 shows
the highest RMSE and NRMSE in winter (226.5 ± 72 and 0.08 ± 0.03), while
Prosumer 3’s error is also notably elevated (75.2 ± 23 and 0.10 ± 0.03).

Prosumer 5 maintains relatively high errors consistently across all seasons
(NRMSE of 0.09), likely reflecting local factors such as shading that make it
harder to predict. In contrast, Prosumer 1 consistently has the lowest errors
across all seasons (NRMSE around 0.06 to 0.07), indicating it is the easiest to
forecast.

Table 4: Seasonal Performance Results for Offline Evaluation of Prosumers.

ID
Winter Spring Summer Autumn

RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE
1 127.69 ±45.14 0.06 ±0.02 136.96 ±44.10 0.06 ±0.02 142.75 ±33.58 0.06 ±0.01 149.14 ±38.04 0.07 ±0.02
2 226.51 ±71.97 0.08 ±0.03 215.01 ±69.42 0.08 ±0.03 182.08 ±62.60 0.07 ±0.02 192.38 ±56.07 0.07 ±0.02
3 75.17 ±23.42 0.10 ±0.03 58.24 ±17.30 0.08 ±0.02 52.20 ±19.80 0.07 ±0.03 66.60 ±21.60 0.09 ±0.03
4 42.04 ±13.41 0.08 ±0.03 41.14 ±19.68 0.08 ±0.04 44.24 ±12.73 0.09 ±0.03 25.62 ±13.51 0.09 ±0.03
5 46.14 ±15.12 0.09 ±0.03 45.34 ±17.14 0.09 ±0.03 45.40 ±12.71 0.09 ±0.03 45.90 ±13.99 0.09 ±0.03

Fig. 3: Visual Comparison of NRMSE across Seasons for Prosumers.

Communication and Computational Costs: The deployment highlighted
practical system constraints and communication overheads. The decision to of-
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fload computationally intensive model training from the 32-bit Raspberry Pi
devices to 64-bit cloud servers was critical for feasibility, establishing a tiered
architecture.

The entire federated training process, encompassing 15 communication rounds,
had a total duration of approximately 8 hours and 15 minutes. During each
round, participating clients trained their local models for an average of 49 min-
utes. The heterogeneity in client participation was notable, with prosumers con-
tributing varying numbers of local training rounds to the global model: Prosumer
1 participated 5 times, Prosumer 2 for 8 times, Prosumer 3 for 8 times, Prosumer
4 for 3 times, and Prosumer 5 for 6 times. After each round of training, the model
weights were transferred between the client and the central server. The model’s
weights data for most cases were around 9 Megabytes.

Regarding data transfer, each Raspberry Pi (edge device) synchronized its
local PV measurements with its respective client server hourly. Given that 15-
minute mean power values were used, this translated to approximately 4 mea-
surements per hour, plus associated timestamps and identifiers. While the exact
payload size varies, this is a relatively small amount of data, as it is in the order
of a few kilobytes per hour. Weather data, crucial for forecasting, was acquired
daily from external APIs (Copernicus and Open-Meteo). These API calls, typi-
cally returning JSON data, also incurred relatively low communication overhead,
usually in the range of tens of kilobytes per daily forecast. The communication
overhead due to the SSH tunnels (for edge-to-client data synchronization) and
TLS encryption (for federated communication via gRPC) is considered negligible
compared to the data payload itself, primarily adding cryptographic handshake
and header bytes.

5.2 Real-Time Operation

Real-Time Predictive Performance: During the project’s development, sev-
eral Raspberry Pis became inaccessible due to hardware or network issues. Con-
sequently, real-time results are limited to prosumers 4 and 5, evaluated from late
March to late April 2025. The results are presented in Table 5.

Overall, the real-time errors are higher than the offline errors, as exemplified
by Prosumer 4, where the RMSE increases from 41.14 ± 19.68 W in Spring
(offline) to 73.19 ± 25.64 W (real-time). To help understand these results, the
predictions for both prosumers are plotted in Figure 4 and Figure 5.

The predicted PV power closely follows the general daily trends of the actual
production, but it often underestimates the output, particularly during peak
hours. This bias can be attributed to the nature of the GHI input data, which
tends to smooth out irradiance peaks and therefore limits the model’s ability
to reflect the full dynamic range of solar production. On days with unusually
low production, likely due to heavy cloud cover or poor weather, the model
instead overestimates the output, revealing a limited sensitivity to such typical
conditions. Additionally, the model struggles to capture short-term fluctuations,
especially those caused by passing clouds, resulting in a mismatch between actual
and predicted power during partially cloudy periods.
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Table 5: Results for the Real-time Deployment.

ID Week RMSE NRMSE
Total

RMSE NRMSE

4

1 73.22 ±15.27 0.15 ±0.03

73.19 ±25.64 0.15 ±0.05

2 46.86 ±6.88 0.09 ±0.01
3 77.06 ±27.58 0.15 ±0.06
4 85.24 ±28.02 0.17 ±0.06
5 82.48 ±50.45 0.16 ±0.10

5

1 71.75 ±9.41 0.14 ±0.02

74.96 ±28.72 0.15 ±0.06

2 54.49 ±17.07 0.11 ±0.03
3 73.01 ±21.05 0.15 ±0.04
4 87.40 ±28.03 0.17 ±0.06
5 91.99 ±68.06 0.18 ±0.14

Ultimately, the model’s accuracy hinges on the quality of the forecasted GHI
data. As illustrated in Figure 6, the GHI inputs themselves fail to reflect rapid
variations, which propagate through to the PV predictions. These limitations
suggest that improving GHI forecasting, or incorporating higher-resolution or
hybrid data sources, could substantially enhance model performance.

Moreover, another factor contributing to these issues may be the use of differ-
ent GHI sources during training and inference, which introduces inconsistencies
in the learned irradiance–power relationship. This is addressed in the next sub-
section.

Fig. 4: Visualization for the Real-time Deployment of Prosumer 4 (25/03/2025 -
26/04/2025).
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Fig. 5: Visualization for the Real-time Deployment of Prosumer 5 (26/03/2025 -
26/04/2025).

(a) Prosumer 4. (b) Prosumer 5.

Fig. 6: Normalised GHI 15-minute intervals trends.

Impact of Weather Data Sources on Forecast Accuracy: To quantify the
performance impact of mismatched weather data sources between training and
inference, we conducted an offline experiment. We compared two sets of model
predictions for the same evaluation period: one generated using weather data
from Copernicus (the source for historical training data) and the other using
data from Open-Meteo (the source used for real-time inference).

Figures 7 and 8 illustrate that the model using Copernicus GHI (magenta)
better tracks the actual PV power (cyan), especially during periods of variable
solar irradiance. In contrast, predictions based on Open-Meteo (black) are con-
sistently lower and smoother, failing to capture rapid fluctuations caused by
passing clouds.

These visual differences are reflected in the aggregate performance met-
rics, summarized per weekly performance in Tables 6 and 7. For both pro-
sumers, Copernicus consistently outperforms Open-Meteo across all five weeks,
with lower average RMSE and NRMSE values. For instance, in the case of
Prosumer 4, Copernicus yields a total RMSE of 55.05±18.67 and NRMSE of
0.11±0.04, compared to 73.19±25.64 and 0.15±0.05 with Open-Meteo. Simi-
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Fig. 7: Visualization for the Predictions made using Copernicus (CO-predicted)
Vs. Open-Meteo (OM-predicted) for Prosumer 4.

Fig. 8: Visualization for the Predictions made using Copernicus (CO-predicted)
Vs. Open-Meteo (OM-predicted) for Prosumer 5.

lar trends are observed for Prosumer 5, where Copernicus achieves 62.08±17.25
RMSE and 0.13±0.03 NRMSE, while Open-Meteo reaches 74.96±28.72 RMSE
and 0.15±0.06 NRMSE.

These results confirm that weather data characteristics significantly influence
forecasting performance. Still, the superior performance observed with Coperni-
cus is likely due primarily to the model having been trained on Copernicus data
and evaluated on the same source; furthermore, since Copernicus provides re-
analysis or observed values rather than actual forecasts, the inputs more closely
reflect real conditions, particularly during periods of high variability, which fur-
ther contributes to improved accuracy. Notably, the variability in performance,
as captured by the standard deviations, is higher with Open-Meteo, which sug-
gests less stable input conditions that translate into less reliable predictions.

Ultimately, these results suggest that models learn patterns and biases spe-
cific to their training data. Introducing a new data source at inference, even after
careful unit conversion, can cause performance to degrade. This is a critical les-
son for real-world machine learning deployments.
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Table 6: PV Power Predictions Using Copernicus vs. Open-Meteo (Prosumer 4).

Data Source Week RMSE NRMSE
Total

RMSE NRMSE

Open-Meteo

1 73.22 ±15.27 0.15 ±0.03

73.19 ±25.64 0.15 ±0.05

2 46.86 ±6.88 0.09 ±0.01
3 77.06 ±27.58 0.15 ±0.06
4 85.24 ±28.02 0.17 ±0.06
5 82.48 ±50.45 0.16 ±0.10

Copernicus

1 54.90 ±14.38 0.11 ±0.03

55.05 ±18.67 0.11 ±0.04

2 54.23 ±21.84 0.11 ±0.04
3 58.92 ±14.62 0.12 ±0.03
4 56.58 ±19.53 0.11 ±0.04
5 43.59 ±22.99 0.09 ±0.05

Table 7: PV Power Predictions Using Copernicus vs. Open-Meteo (Prosumer 5).

Data Source Week RMSE NRMSE
Total

RMSE NRMSE

Open-Meteo

1 71.75 ±9.41 0.14 ±0.02

74.96 ±28.72 0.15 ±0.06

2 54.49 ±17.07 0.11 ±0.03
3 73.01 ±21.05 0.15 ±0.04
4 87.40 ±28.03 0.17 ±0.06
5 91.99 ±68.06 0.18 ±0.14

Copernicus

1 66.11 ±16.54 0.13 ±0.03

62.08 ±17.25 0.13 ±0.03

2 54.47 ±7.21 0.11 ±0.01
3 72.92 ±10.48 0.15 ±0.02
4 57.07 ±19.38 0.11 ±0.04
5 54.17 ±32.64 0.11 ±0.07

6 Conclusion, Limitations and Future Work

This paper has presented a successful end-to-end deployment of a real-time,
cloud-based FL framework for residential PV power forecasting. By seamlessly
integrating data acquisition from five prosumers via edge devices with a scalable
cloud-based training and inference pipeline, we have demonstrated that FL is a
practical, privacy-preserving, and robust approach for collaborative forecasting
across distributed participants.

Our results confirm that federated models can achieve competitive predictive
accuracy, comparable to state-of-the-art day-ahead PV forecasting approaches
that rely on centralized data (e.g., [9,22]), while respecting user data privacy by
avoiding centralized data aggregation. To the best of our knowledge, this study is
among the first to report a real-world implementation of FL-based residential PV
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power forecasting, bridging the gap between theoretical research and practical
deployment.

Nonetheless, the study faces important limitations that open paths for fu-
ture work. The limited number of prosumers constrains the generalizability of our
findings, motivating future evaluations on larger, more heterogeneous cohorts.
Real-time evaluations were considerably affected by edge hardware failures, high-
lighting the need for more robust deployment environments. Moreover, while
different weather data sources were compared, domain adaptation techniques to
address distribution shifts remain unexplored and represent a promising research
direction.

Looking ahead, this work lays a foundation for advancing FL research in
energy forecasting through several avenues. Periodic federated retraining can
help the system adapt to evolving conditions and mitigate concept drift. More
sophisticated FL algorithms that explicitly model inter-client relationships and
heterogeneity may enhance robustness and personalization. Integrating person-
alized PV forecasts into home energy management systems to optimize battery
operation or flexible load scheduling would unlock the practical value of privacy-
preserving predictions. Further investigations into communication overheads, op-
eration on diverse edge hardware, comparisons with centralized approaches, and
the influence of forecast inputs such as GHI will deepen understanding and im-
prove system design.
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