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Abstract—Forecasting the occupancy of electric vehicle (EV)
charging stations is important for optimizing energy management,
reducing user delays, and improving infrastructure planning. This
paper presents a metric-driven hyperparameter optimization frame-
work to enhance the performance of long short-term memory
(LSTM) and eXtreme Gradient Boosting (XGBoost) models on
three forecast horizons: 2 hours, 6 hours, and 24 hours. Using
two optimization tools, Optuna and Hyperopt, models are tuned for
three objective metrics: accuracy, F1 score, and balanced accuracy.
Experiments are conducted on an open-access dataset sourced from
the Dundee City Open Data Portal to facilitate reproducibility. The
results show that using balanced accuracy as the objective function
consistently led to better-performing models, especially in capturing
occupied intervals under class imbalance. Compared to a state-of-
the-art hybrid LSTM baseline, the proposed framework improved
F1 score by up to 10.6% and balanced accuracy by 4.3%. These
findings reinforce the importance of choosing appropriate metrics
in hyperparameter optimization for EV occupancy forecasting.

Index Terms—EV Charging Occupancy, Forecasting Metrics,
Hyperparameter Optimization, LSTM, Public Datasets, XGBoost.
I. INTRODUCTION

Electric vehicles (EVs) are rapidly transforming global trans-
portation systems as part of initiatives to mitigate greenhouse
gas emissions and address climate change. According to the
International Energy Agency [1], EV sales are projected to reach
55% of total vehicle sales by 2035, reinforcing the urgent need
for a robust public charging infrastructure, which is expected to
exceed 15 million units by 2030. While EVs stand out as one of
the few clean technologies currently on track with net-zero emis-
sion goals [2], their accelerated deployment brings operational
challenges for distribution grids. In that context, forecasting EV
charging station occupancy is important for efficient infrastructure
use, improving grid reliability, and minimizing user waiting times
through improved energy and mobility planning. This need is
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particularly relevant in shared or constrained environments like
parking lots, where fairness, limited power capacity, and real-time
decision-making must be considered [3].

Several studies have explored forecasting techniques to pre-
dict EV charging behaviors, focusing on different tasks, scopes,
and data types. Some works address city-scale demand esti-
mation using spatiotemporal frameworks that combine external
urban features with deep learning architectures. For example,
CityEVCP [4] predicts regional EV charging demand by inte-
grating static and dynamic area characteristics with graph-based
modules and Transformer encoders. Other studies, such as [5],
focus on multi-task learning to simultaneously predict charging
occupancy, volume, and duration using temporal GraphSAGE
models. These methods are helpful for grid-level planning but
do not offer charger-level occupancy granularity.

A second category includes studies that estimate occupancy
across multiple chargers. In [6], a federated deep learning frame-
work predicts charger occupancy over short-term horizons using
Long Short-Term Memory (LSTM), BiLSTM, and ConvLSTM.
Although the architecture improves accuracy and privacy, the
authors rely on manual hyperparameter tuning. Similarly, [7]
benchmarks 14 models for day-ahead EV load and occupancy
forecasting across eight datasets from residential, workplace, and
public charging stations. The authors use grid search to tune
hyperparameters and highlight that the Aggregation of Experts,
an ensemble approach, was best for occupancy forecasting.

Finally, charger-level occupancy forecasting, treated as a binary
classification task, is explored in [8] and [9]. The authors of
[8] propose a hybrid LSTM architecture based on historical
occupancy and time-related features. The model was tested on
three months of data from nine rapid chargers from Dundee, UK,
for forecast horizons from 10 minutes to 6 hours. The accuracy
and F1 score of the model outperform four conventional machine
learning and three deep learning methods on all forecast horizons.
This model remains a baseline reference due to its performance
and clear methodological design, although its hyperparameters
were only manually tuned. In [9], authors evaluate data-driven
models for day-ahead EV occupancy and power consumption
forecasting. Hyperparameters are optimized via sequential model-
based optimization; XGBoost performs best at a Boulder City
charger point for charging occupancy.

Forecasting EV charger occupancy is particularly difficult due



to low average usage rates, often below 40%, which results
in highly imbalanced datasets [7], [8]. In such cases, models
that merely predict non-occupancy can achieve high accuracy
while failing to identify real charging events. Metrics like F1
score and balanced accuracy (bACC) are better suited to this
task, as they account for false positives and false negatives [10].
However, few studies compare these metrics in the context of
charger-level predictions. Moreover, machine learning and deep
learning models depend heavily on hyperparameter optimization,
but the effect of different optimization strategies on EV occupancy
forecasting remains underexplored. Understanding which metrics
and tools lead to better results is key to developing robust
occupancy forecasting models under real-world constraints.

In response to those gaps, this paper proposes a metric-driven
hyperparameter optimization framework tailored to EV charging
station occupancy forecasting. Unlike prior studies that rely on
manual or single-metric tuning, our approach systematically com-
pares the performance of LSTM and XGBoost models optimized
with Optuna [11] and Hyperopt [12] across multiple forecasting
horizons (2-hour, 6-hour, and 24-hour ahead). Balanced accu-
racy, F1 score, and accuracy are used to guide optimization
because they capture different aspects of model performance,
reflecting distinct evaluation priorities such as class balance and
event detection. The methodology is validated on a publicly
available dataset from Dundee City to support reproducibility
and benchmarked against a state-of-the-art hybrid LSTM model.
The contributions include: i) a structured comparison of metric-
guided hyperparameter tuning strategies, ii) the benchmarking of
LSTM and XGBoost models under different objective functions
and forecasting horizons, and iii) the provision of reproducible
baselines for future research. The remainder of this paper is
organized as follows: Section II describes the proposed framework
and experimental setup; Section III presents and discusses the
results; and Section IV concludes the paper.

II. METHODOLOGY

The proposed framework for metric-driven hyperparameter
optimization for EV charging occupancy forecasting is shown in
Fig. 1, with green boxes indicating the main steps, orange for
internal tasks, and yellow for the final goal. The methodology
begins with the search for a publicly accessible data set for
the EV session to ensure the reproducibility of experiments and
results. The data set is then preprocessed, starting by discarding
sessions with incomplete data. Later, sessions with a duration
time equal to zero or more than three standard deviations from
the median are deleted. Then, for every session, all minutes from
the start time of the connection to the final minute within its
charging duration are assigned the value one (occupied). Once all
sessions are processed, a minute-by-minute occupancy time series
is obtained. This time series is then downsampled into 10-minute
timestamps, marked as occupied if any minute in the segment is
occupied. The data is split chronologically into training (60%),
validation (20%), and testing (20%) subsets.

LSTM [13] and XGBoost [14] are chosen as forecasting models
to be optimized. LSTM is a recurrent neural network architecture
designed to model time-dependent patterns in sequential data,
making it suitable for time series problems like EV occupancy.
XGBoost, on the other hand, is a gradient boosting algorithm
known for its strong performance on tabular data and its abil-
ity to handle non-linearities and feature interactions efficiently.
Comparing these two modeling paradigms allows assessing their

TABLE I
LSTM HYPERPARAMETER SEARCH SPACE

Hyperparameter Search Space

history_steps depends on forecasting horizon

num_lIstm_blocks {1, 2, 3}
Istm_units_i [16, 128]
Istm_dropout [0.0, 0.5] (step=0.05)
1stm_dense_units [16, 64]

dense_dropout
learning_rate
batch_size

[0.0, 0.5] (step=0.05)
[1e-5, 1e-3] (log)
{16, 32, 64}

TABLE 11
XGBOOST HYPERPARAMETER SEARCH SPACE

Hyperparameter Search Space

history_steps depends on forecasting horizon

max_depth [3, 10]
learning_rate [1e-3, le-1] (log)
n_estimators [50, 300]
subsample [0.5, 1.0]
colsample_bytree [0.5, 1.0]
gamma [0.0, 5.0]
reg_lambda [1e-3, 10.0] (log)
reg_alpha [le-3, 10.0] (log)

advantages in EV occupancy forecasting. Similar comparisons
between LSTM and XGBoost have been successfully applied
in other domains, including sales prediction [15] and short-term
photovoltaic forecasting [16]

For the LSTM-based forecasting model, hyperparameter op-
timization defines its architecture and training dynamics. The
model receives sequential occupancy data over a look-back win-
dow, whose length is tuned as part of the optimization process.
One to three LSTM blocks can be stacked, each with between
16 and 128 units. A dropout layer follows these LSTM layers,
preventing overfitting. A dense layer between 16 and 64 units
is added, followed by another dropout layer. The output layer
is a fully connected layer with sigmoid activation that produces
a multi-step EV charging station occupancy adjusted according
to the forecast horizon. The loss function used is binary cross-
entropy, and the model is trained using the Adam optimizer,
with batch size selected as part of the hyperparameter tuning.
Models are trained for up to 30 epochs using early stopping to
prevent overfitting. Table I summarizes the hyperparameters and
search space of the LSTM-based model. For the XGBoost model,
hyperparameter optimization is applied to control the complexity
and regularization of the ensemble. The history_steps defines the
number of look-back values for the input of the model. The search
space includes key hyperparameters such as maximum tree depth,
learning rate, number of estimators, subsample ratio, and column
sampling ratio. Additionally, regularization parameters such as
gamma, L1, and L2 penalties are optimized. Table II presents the
complete hyperparameters used in the tuning process.

Three metrics are selected as objective functions for the
hyperparameter optimization process: accuracy, F1 score, and
balanced accuracy. These binary classification metrics evaluate
various aspects of the performance of the EV charging occupancy
forecast. Accuracy quantifies the overall proportion of correct
predictions (1). However, it can be misleading in imbalanced
datasets, where occupied time steps are much less frequent than
unoccupied ones. The F1 score combines precision, minimizing
false positives (FP), and recall, minimizing false negatives (FN),
into one metric (2). A FP occurs when a charger is predicted to
be occupied but is not, while a FN is when a charger is predicted
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Fig. 1. Metric-driven hyperparameter optimization framework

to be free but is actually in use. Therefore, the F1 score evaluates
the ability of the model to detect occupancy periods correctly
while minimizing FP. Balanced accuracy effectively tackles the
imbalance problem by equally weighing the correct predictions in
the occupied and unoccupied states (3). It does this by averaging
their true positive (TP) and true negative (TN) rates. The objective
functions for hyperparameter optimization are maximized.

TP + TN
Accuracy = (D)
TP + TN + FP + FN
Fl Score — 2 x Prec%s¥0n x Recall _ TP
Precision + Recall 2 TP+ FP + FN
2
1 TP TN
Bal d A = - 3
alanced Accuracy 5 (TP TEN + ™~ + FP) 3)

Hyperparameter optimization leverages two frameworks: Op-
tuna and Hyperopt. Both use Bayesian optimization with the
Tree-structured Parzen Estimator for handling categorical and
continuous hyperparameters. Although they share this approach,
they differ in implementation and usability. These frameworks are
renowned for their efficient exploration of large hyperparameter
spaces. Each optimization framework performs 100 trials inde-
pendently for every combination of objective function (accuracy,
F1 score, and balanced accuracy), forecasting horizon (2h, 6h, and
24h), and forecasting model (LSTM and XGBoost), exploring the
respective hyperparameter search spaces. After the trials are com-
pleted, a comparative analysis is performed to identify the most
appropriate optimization metric for EV occupancy forecasting.
The selected optimal models are evaluated on the test set and
compared to a baseline model to demonstrate the advantages of
metric-driven hyperparameter optimization.

ITI. RESULTS AND DISCUSSION
A. Dataset Selection and Preprocessing

This paper uses a publicly available EV charging dataset from
the Dundee City Open Data Portal [17]. It contains EV charger
session data from January 2023 to December 2024 of 50 fast, 28
rapid, and 4 ultra-rapid chargers. The rapid charger with ID 51421
was selected for analysis due to a greater number of sessions
with an occupancy rate of 31.05%, which reflects a typical class
imbalance scenario. Initially, 8516 sessions were associated with
this charger, but after preprocessing, 8137 sessions remained. It
is 11.1 sessions per day on average, each lasting about 32.8
minutes on average. To contextualize the characteristics of the
dataset, Fig. 2 shows the distribution of the start times of the
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sessions. Fig. 3 illustrates higher weekend occupancy rates than
on weekdays, particularly in the early hours. These characteristics
provide a realistic and challenging dataset to evaluate the effects
of metric-driven optimization strategies.

B. Baseline Model and Input Features

The hybrid LSTM model proposed in [8] serves as a baseline
to evaluate the performance of the forecast. Its architecture
includes two input branches: one comprising a 12-step sequence
of historical binary occupancy states, and another containing time-
related features: time of day, day of the week, weekday/weekend
classification, and a 144-dimensional occupancy rate profile. The
latter is a fixed vector representing the typical charger occupancy
rates, computed separately for weekdays and weekends using 60%
of data. In this paper, all these features are concatenated for input
into LSTM and XGBoost models. No additional feature engineer-
ing or selection is performed to ensure consistency with the base-
line configuration. The processed dataset is chronologically split
into 60% for training, 20% for validation, and 20% for testing.
Unlike the fixed 12-step input used in the baseline, this study
treats the number of historical steps as a tunable hyperparameter,
allowing the models to adapt their temporal context based on
forecasting horizon and optimization performance.



TABLE III TABLE V
VALIDATION RESULTS FOR 2H FORECAST OF EV LOAD OCCUPANCY VALIDATION RESULTS FOR 24H FORECAST OF EV LOAD OCCUPANCY
exp Objetive Accuracy F1 bACC conv. Time (min) exp Objetive Accuracy Fl1 bACC conv. Time (min)
Baseline Model Baseline Model
0.749 0.400 0.612 0.729 0.345 0.582
XGBoost - Optuna XGBoost - Optuna
1 Accuracy 0.773 0.249 0.564 90 12.6 25 Accuracy 0.757 0.078 0.515 99 186.3
2 fl 0.744 0.443 0.633 96 13.2 26 fl 0.723 0.369 0.591 98 83.6
3 bACC 0.744 0.443 0.633 84 11.1 27 bACC 0.728 0.370 0.592 92 1234
XGBoost - Hyperopt XGBoost - Hyperopt
4 Accuracy 0.772 0.215 0.554 99 16.5 28 Accuracy 0.757 0.068 0.514 66 273.8
5 fl 0.744 0.445 0.634 71 15.0 29 fl 0.720 0.368 0.589 90 94.2
6 bACC 0.744 0.442 0.633 66 13.9 30 bACC 0.728 0.369 0.592 79 104.5
LSTM - Optuna LSTM - Optuna
7 Accuracy 0.771 0.300 0.579 52 372.3 31 Accuracy 0.755 0.125 0.524 93 531.6
8 fl 0.743 0.438 0.630 40 1051.1 32 f1 0.718 0.384 0.597 93 620.6
9 bACC 0.737 0.450 0.636 98 412.6 33 bACC 0.718 0.389 0.599 91 304.6
LSTM - Hyperopt LSTM - Hyperopt
10 accuracy 0.769 0.335 0.590 89 420.6 34 Accuracy 0.753 0.141 0.527 25 630.0
11 f1 0.737 0.435 0.628 80 419.7 35 fl 0.721 0.372 0.591 76 575.0
12 bACC 0.739 0.443 0.632 52 499.8 36 bACC 0.721 0.381 0.596 25 1299.7
TABLE IV .. ..
VALIDATION RESULTS FOR 6H FORECAST OF EV LOAD OCCUPANCY very similar predictive performance. However, LSTM offers
oxp Objetive Accuracy Fi PACC  conv.  Time (min) s.hghtly better results z}t the cost of significantly higher training
Baseline Model time, up to forty-five times longer than XGBoost, as seen when
0.731 0373 0595 comparing experiments 3 (XGBoost) and 12 (LSTM). Given
XGBoost - Optuna . : _
3 Accuracy 076l 0073 05T 7 33 thls contexF, XGBopst presents a valuable a}ternatlve for real
14 f1 0.732 0398  0.607 92 482 time operational environments where computational resources and
15 bACC 0.731 0.399  0.607 93 34.1 speed are crucial. In terms of convergence, no consistent pattern
XGBoost - Hyperopt favors one model across tools. Under Optuna, convergence rates
16 Accuracy 0.761 0.095 0.521 77 47.4 ..
17 1 0.731 0397  0.606 74 36.2 are similar between XGBoost and LSTM. Furthermore, Optuna
18 bACC 0.731 0396  0.606 84 40.2 consistently outperformed Hyperopt, suggesting it better exploits
LSTM - Optuna the hyperparameter search space for these forecasting models.
19 Accuracy 0.756 0.181 0.538 62 295.0 Model imized fi fi defaulted dicti
20 il 0724 0385 0599 14 1618 odels optlm.lze for accuracy o ten de au te .Fo predicting
21 bACC 0.725 0.397  0.605 76 216.4 non-occupancy, inflating accuracy scores while failing to detect
Z;STM - Hyperopt _— S - - real charging events. Therefore, accuracy fails the real purpose
accuracy . . . . . . L
2 fl 0735 0369 0594 19 705.7 of' EV occupancy .forecastlr?g. to anticipate 'When a charger
24 bACC 0.735 0.381 0.599 87 660.4 will be used. For instance, in the 2-hour horizon, experiment

C. Hyperparameter Optimization

Hyperparameter optimization experiments were performed for
each of the three forecasting horizons, 2, 6, and 24 hours, using
LSTM and XGBoost models. Each model was tuned with Optuna
and Hyperopt, using three objective metrics: accuracy, F1 score,
and balanced accuracy, with 100 trials per run. This results in 12
optimization runs per horizon (2 models X 2 tools x 3 metrics),
totaling 36 experiments. The results are shown in Tables III,
IV, and V, and include validation performance of the baseline
model, which was evaluated 10 times with different random seeds,
as reported in the original study. For each metric, the highest-
performing configuration is highlighted.

The metric-driven optimization framework consistently outper-
formed the baseline model across all forecasting horizons, espe-
cially considering the F1 score and balanced accuracy. While the
baseline hybrid LSTM achieved slightly better accuracy in certain
cases, it consistently showed lower capability to detect actual
charging sessions, reflected by its notably lower F1 and balanced
accuracy scores. This confirms that accuracy alone is misleading
in EV occupancy forecasting. Forecasting performance decreased
over longer horizons, which is expected due to higher uncertainty
in longer-term predictions. The drop was more pronounced for
balanced accuracy and F1 score, which emphasize the correct
identification of occupied periods.

Between the evaluated models, XGBoost and LSTM exhibit

1 reached 0.773 in accuracy but only 0.249 in F1 and 0.564
in balanced accuracy. In contrast, experiment 9, optimized for
balanced accuracy, achieved 0.636 in bACC and 0.450 in F1, the
highest for this horizon. The same pattern appears in the 6-hour
horizon, where experiment 13 (accuracy) reached only 0.072 in
F1, while experiment 15 (balanced accuracy) yielded 0.399 in
F1 and 0.607 in bACC. For the 24-hour horizon, experiment
25 (accuracy) again scored low on F1 (0.078) compared to
experiment 33 (balanced accuracy), which achieved the top F1
(0.389) and bACC (0.599). These results demonstrate that bal-
anced accuracy consistently offers the best compromise between
correctly identifying occupied and unoccupied states, making it
the most appropriate metric for hyperparameter optimization in
EV occupancy forecasting tasks.

D. Model Architecture Analysis

After identifying the best-performing configurations based on
balanced accuracy, three models were selected for final evalu-
ation: Experiment 9 (LSTM) for 2-hour forecasting, Experiment
15 (XGBoost) for 6-hour forecasting, and Experiment 33 (LSTM)
for day-ahead forecasting. These models are detailed in Table VI.
Notably, all three were obtained using Optuna.

Optuna’s importance analysis highlights which parameters
most influenced performance. For the 2-hour LSTM model,
Istm_dropout (42.7%), dense_dropout (22.5%), and learning_rate
(11.6%) were the most influential. This shows the critical role
of regularization and stable training at very short horizons. For



TABLE VI
BEST MODEL ARCHITECTURES FOR EACH HORIZON
Exp Hyperparameters Horizon
9 history_steps=36, num_Istm_blocks=1, 2h

Istm_units=40,
Istm_dense_units=57,
Ir=3.27e-05, bs=32

15  history_steps=12, max_depth=10, 1r=0.08433, 6h
n_estimators=291, subsample=0.701,
colsample_bytree=0.916, gamma=1.40,
reg_lambda=0.282, reg_alpha=9.82

Istm_dropout=0.35,
dense_dropout=0.0,

33 history_steps=12, num_lIstm_blocks=2, 24h
Istm_units=[87,100], Istm_dropout=0.25,
Istm_dense_units=58, dense_dropout=0.0,

Ir=5.53e-04, bs=16
TABLE VII

TEST PERFORMANCE: BEST MODEL VS. BASELINE
Horizon Best Model Baseline

Accuracy F1 bACC  Accuracy F1 bACC
2h 0.750 0.523  0.675 0.758 0.473  0.647
6h 0.730 0.439 0.624 0.732 0.425 0.618
24h 0.716 0.424  0.613 0.724 0.385 0.597

the 6-hour XGBoost model, performance was almost entirely
determined by the learning_rate (90.1%), far exceeding the
contributions of n_estimators (4.7%) and max_depth (2.2%). In
contrast, the 24-hour LSTM model was mainly influenced by
history_steps (81.2%), followed by dense_dropout (8.9%) and
Istm_dense_units (3.8%). This suggests that capturing longer
temporal patterns becomes more critical than regularization as
the forecast horizon grows. Notably, learning_rate consistently
remains moderately influential across all models.

E. Test Set Evaluation

The best trained model from each forecasting horizon (Ta-
ble VI) was used for final evaluation on the independent test set.
Table VII presents the corresponding test performance compared
to the baseline hybrid LSTM model. In all horizons, the metric-
driven optimization approach outperformed the baseline in both
F1 score and balanced accuracy—metrics more appropriate for
EV occupancy forecasting. However, accuracy decreased slightly
in two of the three horizons.

At the 2-hour horizon, the optimized model improved the F1
score by 10.6% (from 0.473 to 0.523) and balanced accuracy
by 4.3% (from 0.647 to 0.675), while accuracy dropped only
1.1%. For the 6-hour forecast, F1 score increased by 3.3%, and
balanced accuracy by 1%, with nearly identical accuracy. At the
24-hour horizon, F1 score improved by 10.1% (from 0.385 to
0.424), and balanced accuracy by 2.7% (from 0.597 to 0.613) with
a minimal 0.8% decrease in accuracy. These results show that the
proposed metric-driven hyperparameter optimization framework
outperforms the baseline model in key metrics. By optimizing
balanced accuracy, the approach improves model generalization
to new data while avoiding overfitting, thereby improving the
reliability of EV occupancy forecasting.

IV. CONCLUSIONS

This paper proposed a metric-driven hyperparameter opti-
mization framework to improve electric vehicle (EV) charging
station occupancy forecasting. The study systematically evaluated
how different objective metrics affect predictive performance by
tuning Long Short-Term Memory (LSTM) and eXtreme Gradient

Boosting (XGBoost) models using two optimization tools: Optuna
and Hyperopt, across forecasting horizons of 2, 6, and 24 hours.
All experiments were carried out on a real-world dataset from
the Dundee City Open Data Portal, ensuring reproducibility
and allowing future benchmarking on publicly available data.
The results showed that optimizing based on balanced accuracy
produced the best overall models. In contrast, accuracy-based
optimization consistently failed to capture charging events due
to the imbalanced nature of occupancy data. Compared to a
previously published hybrid LSTM baseline, the proposed models
achieved significant improvements of up to 10.6% in F1 score and
4.3% in balanced accuracy for the test set. Optuna consistently
provided the best results, while LSTM offered slightly higher
performance at a significantly higher computational cost. Future
work will explore additional architectures and incorporate richer
temporal and contextual features.
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