window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-50665694-8');
Lucas Pereira, Miguel Ribeiro, Nuno J. Nunes
Proceedings of IFIP SustainIT 2017, Funchal, Portugal
Publication year: 2017

Abstract

Current approaches for collecting and labeling Non- Intrusive Load Monitoring (NILM) datasets still rely heavily on a lengthy and error-prone manual inspection of the whole dataset. Consequently, it is still difficult to find fully labeled datasets that could help furthering, even more, the research in this field. In an attempt to overcome this situation, we propose a hardware and software platform to collect and label NILM sensor data in a semi-automatic labeling fashion. Our platform combines aggregate and plug-level smart-meters to measure consumption data, software algorithms to automatically detect changes in the different monitored loads and a graphical user interface where the end-user can supervise the labeling process. In this paper, we describe the different components that comprise our platform. We also present the results of one live deployment that was performed to test the feasibility of our approach. The results of the deployment show that our system was capable of explaining about 82% of the aggregate load, and automatically detect 94% of the power transitions in the plug-level loads.

Resources

Software (GitLab Repository)

Data (SustDataED Public Dataset)

Do NOT follow this link or you will be banned from the site!