window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-50665694-8');
Abstract
With the advent of IoT and low-cost sensing technologies, the availability of data has reached levels never imagined before by the research community. However, independently of its size, data is only as valuable as the ability to have access to it. This paper presents the FIKWater dataset, which contains time series data for hot and cold water demand collected from three restaurant kitchens in Portugal for consecutive periods between two and four weeks. The measurements were taken using ultrasonic flow meters, at a sampling frequency of 15Hz. Additionally, some details of the monitored spaces are also provided.
Abstract
In the era of big data and artificial intelligence, public datasets are becoming increasingly important for researchers to build and evaluate their models. This paper presents the FIKWaste dataset, which contains time series data for the volume of waste produced in three restaurant kitchens in Portugal. Glass, paper, plastic, and undifferentiated waste bins were monitored for consecutive periods of four weeks. In addition to the time-series measurements, the FIKWaste dataset contains labels for waste disposal events, i.e., when the waste bins are emptied, and technical and non-technical details of the monitored kitchens.
Abstract
The key advantage of smart meters over traditional metering devices is their ability to transfer consumption information to remote data processing systems. Besides enabling the automated collection of a customer’s electricity consumption for billing purposes, the data collected by these devices makes the realization of many novel use cases possible.
However, the large majority of such services are tailored to improve the power grid’s operation as a whole.
For example, forecasts of household energy consumption or photovoltaic production allow for improved power plant generation scheduling. Similarly, the detection of anomalous consumption patterns can indicate electricity theft and serve as a trigger for corresponding investigations. Even though customers can directly influence their electrical energy consumption, the range of use cases to the users’ benefit remains much smaller than those that benefit the grid in general.
In this work, we thus review the range of services tailored to the needs of end-customers. By briefly discussing their technological foundations and their potential impact on future developments, we highlight the great potentials of utilizing smart meter data from a user-centric perspective. Several open research challenges in this domain, arising from the shortcomings of state-of-the-art data communication and processing methods, are furthermore given. We expect their investigation to lead to significant advancements in data processing services and ultimately raise the customer experience of operating smart meters.
Abstract
This paper presents an economic assessment of introducing solar-powered residential battery energy storage in the Madeira Island electric grid, where only micro-production for self-consumption is currently allowed. The evaluation was conducted against six local micro-producers using one year of energy consumption and solar photovoltaic production measurements and two distinct storage control strategies. Several inverter sizes and storage capacities were considered based on the six micro-producers’ consumption and production profiles. The results were then analyzed concerning year-long simulations and a projection for the next ten years. To this end, several indicators were assessed, including self-consumption, profit per Euro invested, number of cycles, and storage degradation. The results obtained show that despite the benefits of storage to increase the self-consumption rates, considerable drops in the storage prices are still necessary to achieve profitability during these devices’ lifetime. Furthermore, our results also highlight a very interesting trade-off between self-consumption, pre-charge, and profitability, in a sense that higher levels of pre-charge increase the chances of reaching profitability even though this will imply considerable drops in the levels of self-consumption.
Abstract
The advance in energy-sensing and smart-meter technologies have motivated the use of a Non-Intrusive Load Monitoring (NILM), a data-driven technique that recognizes active end-use appliances by analyzing the data streams coming from these devices. NILM offers an electricity consumption pattern of individual loads at consumer premises, which is crucial in the design of energy efficiency and energy demand management strategies in buildings. Appliance classification, also known as load identification is an essential sub-task for identifying the type and status of an unknown load from appliance features extracted from the aggregate power signal. Most of the existing work for appliance recognition in NILM uses a single-label learning strategy which, assumes only one appliance is active at a time. This assumption ignores the fact that multiple devices can be active simultaneously and requires a perfect event detector to recognize the appliance. In this paper proposes the Convolutional Neural Network (CNN)-based multi-label learning approach, which links multiple loads to an observed aggregate current signal. Our approach applies the Fryze power theory to decompose the current features into active and non-active components and use the Euclidean distance similarity function to transform the decomposed current into an image-like representation which, is used as input to the CNN. Experimental results suggest that the proposed approach is sufficient for recognizing multiple appliances from aggregated measurements.
Resources
Abstract
Appliance recognition is one of the vital sub-tasks of NILM in which a machine learning classier is used to detect and recognize active appliances from power measurements. The performance of the appliance classifier highly depends on the signal features used to characterize the loads. Recently, different appliance features derived from the voltage–current (V–I) waveforms have been extensively used to describe appliances. However, the performance of V–I-based approaches is still unsatisfactory as it is still not distinctive enough to recognize devices that fall into the same category. Instead, we propose an appliance recognition method utilizing the recurrence graph (RG) technique and convolutional neural networks (CNNs). We introduce the weighted recurrent graph (WRG) generation that, given one-cycle current and voltage, produces an image-like representation with more values than the binary output created by RG. Experimental results on three different sub-metered datasets show that the proposed WRG-based image representation provides superior feature representation and, therefore, improves classification performance compared to V–I-based features.
Resources
Abstract
The work in this paper proposes the application of the pinball quantile loss function to guide a deep neural network for Non-Intrusive Load Monitoring. The proposed architecture leverages concepts such as Convolution Neural Networks and Recurrent Neural Networks. For evaluation purposes, this paper also presents a set of complementary performance metrics for energy estimation. Finally, this paper also reports on the results of a comprehensive benchmark between the proposed network and three alternative deep neural networks, when guided by the pinball and Mean Squared Error loss functions. The obtained results confirm the disaggregation superiority of the proposed system, while also showing that the performances obtained using the pinball loss function are consistently superior to the ones obtained using the Mean Squared Error loss.
Resources
Abstract
The importance of reactive power compensation for power factor (PF) correction will significantly increase with the large-scale integration of distributed generation interfaced via inverters producing only active power. In this work, we focus on co-optimizing energy storage for performing energy arbitrage as well as local power factor correction. The joint optimization problem is non-convex, but can be solved efficiently using a McCormick relaxation along with penalty-based schemes. Using numerical simulations on real data and realistic storage profiles, we show that energy storage can correct PF locally without reducing arbitrage profit. It is observed that active and reactive power control is largely decoupled in nature for performing arbitrage and PF correction (PFC). Furthermore, we consider a real-time implementation of the problem with uncertain load, renewable and pricing profiles. We develop a model predictive control based storage control policy using auto-regressive forecast for the uncertainty. We observe that PFC is primarily governed by the size of the converter and therefore, look-ahead in time in the online setting does not affect PFC noticeably. However, arbitrage profit is more sensitive to uncertainty for batteries with faster ramp rates compared to slow ramping batteries.
Resources
Abstract
This paper reports on the different engineering, social and financial challenges behind the building and deploying electric energy monitoring and eco-feedback technology in real-world scenarios, which despite being relevant to the research community are seldom reported in the literature. The objectives of this paper are two-fold: First, discuss the technical and social constraints of real-world deployments. This includes, for example, hardware and software requirements, and issues related to security and intrusiveness of the monitoring solutions. Second, identify and understand the costs associated with developing and deploying such systems. These include hardware costs and consumed energy. To this end, we rely on over five years of experience developing and improving a non-intrusive energy monitoring research platform to enable the deployment of long and short-term studies of eco-feedback technology. During this time, two versions of that platform were deployed in 50 homes for periods that lasted between 6 and 18 consecutive months. By iteratively developing and deploying our sensing and eco-feedback infrastructures, we managed to build upon previous findings and lessons learned to understand how to create, deploy, and maintain such systems. Concurrently, we gained insights regarding what are some of the most relevant costs associated with running such experiments.
Supplementary Material